Search for geospatial/GIS data

Find GIS data held at MIT and other institutions

Title: Coarse Filter Vegetation Map: San Francisco Bay Area and Santa Cruz County, California, 2006

Contributors:

Dates

  • Issued: 2011
  • Coverage: 2006

Publishers

  • Bay Area Open Space Council

Summary

This raster dataset depicts a final version of the Coarse Filter Vegetation Map as a 30 meter grid with 61 cover types, 51 of which are natural or semi-natural land cover, for the nine county San Francisco Bay Area Region and Santa Cruz County, California. See Resource Details for detailed data compilation description. This data was compiled from data sourced from the United States Department of Agriculture Forest Service, The Nature Conservancy and the California Department of Forestry and Fire. This dataset was developed/compiled for use in the San Francisco Bay Area Upland Habitat Goals Project, a Project used to identify a Conservation Lands Network (CLN) for biodiversity preservation to inform conservation investments and lasting cooperative conservation partnerships. The Conservation Lands Network GIS Database is the primary output of the Project. The data depicts the spatially explicit CLN that is recommended for the nine county San Francisco Bay Area Region, California. Bay Area Open Space Council, GreenInfo Network, Conservation Lands Network, and San Francisco Bay Area Upland Habitat Goals Project. (2011). Coarse Filter Vegetation Map: San Francisco Bay Area and Santa Cruz County, California, 2006. Bay Area Open Space Council. Available at: http://purl.stanford.edu/bj949wd0866 Same as cln_veg with the addition of Santa Cruz county. A crosswalk was done with the vegetation map from the Santa Cruz Conservation Blueprint. This one also includes the original veg types before they were reclassified into rural residential. This is the vegetation dataset created specifically for the Upland Habitat Goals Project. The coarse filter vegetation targets were generated from this dataset. For a full description of the development of the coarse filter vegetation map along with helpful maps and graphics, see chapter 5 (Coars Filter and Vegetation Representation Analysis) in the final report. The first challenge faced by the Vegetation Focus Team was the lack of a consistent vegetation map covering the region. The team's preferred vegetation classification system was Manual of California Vegetation (Sawyer et.al. 2009) (MCV) because of the detail it provides. But, only a few areas within the Upland Habitat Goals Study Area have been mapped using MCV. An alternative vegetation classification system developed by the US Forest Service, CalVeg, covers almost the entire region but has some spatial inaccuracies and lacks sufficient detail for annual grasslands, shrub communities, riparian corridors, and isolated wetlands. The Vegetation Focus Team agreed to use a modified version of CalVeg, referred to as the Upland Habitat Goals Coarse Filter Vegetation Map, which provided adequate and consistent coverage for the full study area. The Coarse Filter Vegetation Map is a composite of several data sources: 1. The USDA Forest Service CalVeg Vegetation Map (CalVeg). CalVeg is the primary source of the vegetation data. 2. The Nature Conservancy's Composite Vegetation Map (TNC Composite). Developed by the Nature Conservancy for the Central Coast Ecoregional Plan, this composite of the California Department of Forestry Hardwoods and GAP (Holland 1986) was used to fill in two gaps in coverage by CalVeg. 3. The California Department of Forestry and Fire Multi-Source Vegetation Map (CDF Multi-Source). This composite of the California Department of Forestry Hardwoods, the Department of Conservation Farmland Mapping and Monitoring Program (FMMP), and the Department of Fish and Game California Vernal Pool Assessment was used to fill in a gap in CalVeg coverage in the Suisun Marsh region of Solano County. Starting with this composite vegetation map, the team made two primary enhancements. First, a serpentine geology layer from the USDA Natural Resources Conservation Service (NRCS) State Soil Geographic (STATSGO) Database was added to capture the unique vegetation types found on serpentine soils. Second, a climatic stratification was used to differentiate the approximately one million acres identified as Annual Grasslands in CalVeg. These grasslands were separated into Cool, Moderate, Warm, and Hot Grasslands based on July maximum temperatures established by PRISM (800-meter scale Parameter-elevation Regressions on Independent Slopes Model), a climate mapping system developed at Oregon State University. Figure 5.2 illustrates these temperature stratifications. Riparian Vegetation Riparian areas pose special challenges at the regional scale of the Upland Habitat Goals Project. While the Coarse Filter Vegetation Map captures the larger patches of riparian forests as mapped by CalVeg, it misses the many narrow ribbons of remnant riparian habitat. It also fails to capture the complex mix of local and watershed-scale processes operating in riparian areas, which are critical to biodiversity for all species groups. To capture these smaller riparian areas, the USGS National Hydrologic Database (NHD) was used in the fine filter process to define stream corridors with riparian habitat potential; the streams are included in the final Conservation Lands Network. Converted Lands The last step in the development of the Coarse Filter Vegetation Map added the Farmland Mapping and Monitoring Program (FMMP) Urban and Cultivated Agricultural data, and identified rural residential parcels less than 10 acres. Appendix B: Chapter 5 describes how the Rural Residential 10 data layer was created. The FMMP data was more current (2008) than similar land use types in CalVeg, and rural residential parcels are typically found on the urban fringe and of lower conservation suitability. Collectively, these areas are referred to as "Converted Lands" and are illustrated in Figure 5.3. Converted Lands were occasionally selected by Marxan for inclusion in the Conservation Lands Network if they contained conservation targets needed to meet the 90%, 75%, or 50% goals, or the 247-acre hexagon included 10% or more of protected lands. As noted in Chapter 4, lands over-selected by Marxan were removed except for the location of the target. Riparian Vegetation Riparian areas pose special challenges at the regional scale of the Upland Habitat Goals Project. While the Coarse Filter Vegetation Map captures the larger patches of riparian forests as mapped by CalVeg, it misses the many narrow ribbons of remnant riparian habitat. It also fails to capture the complex mix of local and watershed-scale processes operating in riparian areas, which are critical to biodiversity for all species groups. To capture these smaller riparian areas, the USGS National Hydrologic Database (NHD) was used in the fine filter process to define stream corridors with riparian habitat potential; the streams are included in the final Conservation Lands Network. Converted Lands The last step in the development of the Coarse Filter Vegetation Map added the Farmland Mapping and Monitoring Program (FMMP) Urban and Cultivated Agricultural data, and identified rural residential parcels less than 10 acres. Appendix B: Chapter 5 describes how the Rural Residential 10 data layer was created. The FMMP data was more current (2008) than similar land use types in CalVeg, and rural residential parcels are typically found on the urban fringe and of lower conservation suitability. Collectively, these areas are referred to as "Converted Lands" and are illustrated in Figure 5.3. Converted Lands were occasionally selected by Marxan for inclusion in the Conservation Lands Network if they contained conservation targets needed to meet the 90%, 75%, or 50% goals, or the 247-acre hexagon included 10% or more of protected lands. As noted in Chapter 4, lands over-selected by Marxan were removed except for the location of the target. Riparian Vegetation Riparian areas pose special challenges at the regional scale of the Upland Habitat Goals Project. While the Coarse Filter Vegetation Map captures the larger patches of riparian forests as mapped by CalVeg, it misses the many narrow ribbons of remnant riparian habitat. It also fails to capture the complex mix of local and watershed-scale processes operating in riparian areas, which are critical to biodiversity for all species groups. To capture these smaller riparian areas, the USGS National Hydrologic Database (NHD) was used in the fine filter process to define stream corridors with riparian habitat potential; the streams are included in the final Conservation Lands Network. Converted Lands The last step in the development of the Coarse Filter Vegetation Map added the Farmland Mapping and Monitoring Program (FMMP) Urban and Cultivated Agricultural data, and identified rural residential parcels less than 10 acres. Appendix B: Chapter 5 describes how the Rural Residential 10 data layer was created. The FMMP data was more current (2008) than similar land use types in CalVeg, and rural residential parcels are typically found on the urban fringe and of lower conservation suitability. Collectively, these areas are referred to as "Converted Lands" and are illustrated in Figure 5.3. Converted Lands were occasionally selected by Marxan for inclusion in the Conservation Lands Network if they contained conservation targets needed to meet the 90%, 75%, or 50% goals, or the 247-acre hexagon included 10% or more of protected lands. As noted in Chapter 4, lands over-selected by Marxan were removed except for the location of the target. Riparian Vegetation Riparian areas pose special challenges at the regional scale of the Upland Habitat Goals Project. While the Coarse Filter Vegetation Map captures the larger patches of riparian forests as mapped by CalVeg, it misses the many narrow ribbons of remnant riparian habitat. It also fails to capture the complex mix of local and watershed-scale processes operating in riparian areas, which are critical to biodiversity for all species groups. To capture these smaller riparian areas, the USGS National Hydrologic Database (NHD) was used in the fine filter process to define stream corridors with riparian habitat potential; the streams are included in the final Conservation Lands Network. Converted Lands The last step in the development of the Coarse Filter Vegetation Map added the Farmland Mapping and Monitoring Program (FMMP) Urban and Cultivated Agricultural data, and identified rural residential parcels less than 10 acres. Appendix B: Chapter 5 describes how the Rural Residential 10 data layer was created. The FMMP data was more current (2008) than similar land use types in CalVeg, and rural residential parcels are typically found on the urban fringe and of lower conservation suitability. Collectively, these areas are referred to as "Converted Lands" and are illustrated in Figure 5.3. Converted Lands were occasionally selected by Marxan for inclusion in the Conservation Lands Network if they contained conservation targets needed to meet the 90%, 75%, or 50% goals, or the 247-acre hexagon included 10% or more of protected lands. As noted in Chapter 4, lands over-selected by Marxan were removed except for the location of the target. This layer is presented in the WGS84 coordinate system for web display purposes. Downloadable data are provided in native coordinate system or projection.

Subjects

  • Environment
  • San Francisco Bay Area (Calif.)
  • Alameda County (Calif.)
  • Contra Costa County (Calif.)
  • Marin County (Calif.)
  • Napa County (Calif.)
  • San Francisco County (Calif.)
  • San Mateo County (Calif.)
  • Santa Clara County (Calif.)
  • Solano County (Calif.)
  • Sonoma County (Calif.)
  • Santa Cruz County (Calif.)
  • Biogeography
  • Vegetation surveys
  • Vegetation mapping
  • Biology and Ecology
  • Imagery and Base Maps
  • Datasets

Geospatial coordinates

  • Bounding Box: BBOX (-123.5347203, -121.1642743, 38.8658668, 36.8437114)
  • Geometry: BBOX (-123.5347203, -121.1642743, 38.8658668, 36.8437114)

Provider

Stanford

Rights

  • Access rights: Public

Citation

Bay Area Open Space Council, Conservation Lands Network, San Francisco Bay Area Upland Habitat Goals Project, GreenInfo Network (Firm). Coarse Filter Vegetation Map: San Francisco Bay Area and Santa Cruz County, California, 2006. Bay Area Open Space Council. Raster data. https://purl.stanford.edu/mf916nr2001

Format

ArcGRID

Languages

  • English