Search for geospatial/GIS data

Find GIS data held at MIT and other institutions

5,531 results returned

  1. Title: Average Annual Precipitation, New York State, 1961-1990

    Contributors:

    Summary: This data set shows polygons of average annual precipitation in New York State, for the climatological period 1961-1990. Parameter-elevation Regressions on Independent Slopes Model (PRISM) derived raster data is the underlying data set from which the polygons and vectors were created. PRISM is an analytical model that uses point data and a digital elevation model (DEM) to generate gridded estimates of annual, monthly and event-based climatic parameters. These data are intended for geographic display and analysis at the national level, and for large regional areas. The data should be displayed and analyzed at scales appropriate for 1:2,000,000-scale data. No responsibility is assumed by the Spatial Climate Analysis Service, the USDA - NRCS National Water and Climate Center, the USDA - NRCS National Cartography and Geospatial Center, or the U.S. Geological Survey in the use of these data.

  2. Title: United States of America (Raster Image)

    Contributors:

    Summary: This layer is a georeferenced image of a map of the United States. The original map was published in 'A Complete Genealogical, Historical, Chronological, and Geographical Atlas; Being a General Guide to History, Both Ancient and Modern...' published by M. Carey in 1820. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, or other information associated with the principal map. A scanned version of this map was georeferenced by the Center for Spatial and Textual Analysis (CESTA) at Stanford University. This map is part of a selection of georeferenced historic maps from the David Rumsey Map Collection at Stanford University.This layer provides an historical perspective of the cultural and physical landscape during this time period. The wide range of information provided on these maps make them useful in the study of historic geography. As this map has been georeferenced, it also can be used as a background layer in conjunction with other GIS data.

  3. Title: Average Annual Precipitation (Inches): California, 1981-2010 (800m)

    Contributors:

    Summary: This raster layer contains the average annual precipitation levels in inches for California from 1981 to 2010. This dataset incorporates a conceptual framework that uniquely addresses the spatial scale and pattern of orographic precipitation. The original PRISM dataset covered the United States. This is a California-only version subsetted from the original data set and converted to California Teale Albers NAD83 using bilinear interpolation by the California Department of Fish and Game (CDFG) at 800m resolution. The grid units are presented in inches with floating point. Care should be taken in estimating precipitation values at any single point on the map. Precipitation estimated for each grid cell is an average over the entire area of that cell; thus, point precipitation can be estimated at a spatial precision no better than half the resolution of a cell. Accuracy of this data set is based on the original specification of the Defense Mapping Agency (DMA) 1 degree digital elevation models (DEMs). The stated accuracy of the original DEMs is 130m circular error with 90% probability. The Parameter-elevation Regressions on Independent Slopes Model (PRISM) Climate Group works on a range of projects, some of which support the development of spatial climate datasets. These PRISM datasets provide estimates of the basic climate element of precipitation (ppt), or the daily total precipitation averaged over a month for both rain and melted snow. These datasets are modeled with PRISM using a digital elevation model (DEM) as the predictor grid and provide baselines describing average annual precipitation between 1981 and 2000 to be used for display and/or analyses requiring spatially distributed annual precipitation. Annual grids were produced by averaging (temperatures) or summing (precipitation) the monthly grids. California Department of Fish and Wildlife. (2007). Average Annual Precipitation (Inches): California, 1981-2010 (800m). California Department of Fish and Wildlife. Available at: http://purl.stanford.edu/cp513wz4565. There are many methods of interpolating precipitation from monitoring stations to grid points. Some provide estimates of acceptable accuracy in flat terrain, but few have been able to adequately explain the extreme, complex variations in precipitation that occur in mountainous regions. Significant progress in this area has been achieved through the development of PRISM (Parameter-elevation Regressions on Independent Slopes Model). PRISM is an analytical model that uses point data and a digital elevation model (DEM) to generate gridded estimates of monthly and annual precipitation (as well as other climatic parameters). PRISM is well suited to regions with mountainous terrain, because it incorporates a conceptual framework that addresses the spatial scale and pattern of orographic precipitation. This layer is presented in the WGS84 coordinate system for web display purposes. Downloadable data are provided in native coordinate system or projection.

  4. Title: Average Monthly Precipitation for January (Millimeters): California, 1981-2010 (800m)

    Contributors:

    Summary: This raster layer contains the average monthly precipitation levels in millimeters for January 1981-2010. This dataset incorporates a conceptual framework that uniquely addresses the spatial scale and pattern of orographic precipitation. The original PRISM dataset covered the United States. This is a California-only version subsetted from the original data set and converted to California Teale Albers NAD83 using bilinear interpolation by the California Department of Fish and Game (CDFG) at 800m resolution. The grid units are presented in millimeters with floating point. Care should be taken in estimating precipitation values at any single point on the map. Precipitation estimated for each grid cell is an average over the entire area of that cell; thus, point precipitation can be estimated at a spatial precision no better than half the resolution of a cell. Accuracy of this data set is based on the original specification of the Defense Mapping Agency (DMA) 1 degree digital elevation models (DEMs). The stated accuracy of the original DEMs is 130m circular error with 90% probability. The Parameter-elevation Regressions on Independent Slopes Model (PRISM) Climate Group works on a range of projects, some of which support the development of spatial climate datasets. These PRISM datasets provide estimates of the basic climate element of precipitation (ppt), or the Daily total precipitation averaged over a month for both rain and melted snow. These datasets are modeled with PRISM using a digital elevation model (DEM) as the predictor grid and provide baselines describing average monthly precipitation between 1981 and 2000 to be used for display and/or analyses requiring spatially distributed monthly or annual precipitation. Grids were modeled on a monthly basis. Annual grids were produced by averaging (temperatures) or summing (precipitation) the monthly grids. California Department of Fish and Wildlife. (2007). Average Monthly Precipitation for January (Millimeters): California, 1981-2010 (800m). California Department of Fish and Wildlife. Available at: http://purl.stanford.edu/sd483rh8562. There are many methods of interpolating precipitation from monitoring stations to grid points. Some provide estimates of acceptable accuracy in flat terrain, but few have been able to adequately explain the extreme, complex variations in precipitation that occur in mountainous regions. Significant progress in this area has been achieved through the development of PRISM (Parameter-elevation Regressions on Independent Slopes Model). PRISM is an analytical model that uses point data and a digital elevation model (DEM) to generate gridded estimates of monthly and annual precipitation (as well as other climatic parameters). PRISM is well suited to regions with mountainous terrain, because it incorporates a conceptual framework that addresses the spatial scale and pattern of orographic precipitation. This layer is presented in the WGS84 coordinate system for web display purposes. Downloadable data are provided in native coordinate system or projection.

  5. Title: Average Monthly Precipitation for May (Millimeters): California, 1981-2010 (800m)

    Contributors:

    Summary: This raster layer contains the average monthly precipitation levels in millimeters for May 1981-2010. This dataset incorporates a conceptual framework that uniquely addresses the spatial scale and pattern of orographic precipitation. The original PRISM dataset covered the United States. This is a California-only version subsetted from the original data set and converted to California Teale Albers NAD83 using bilinear interpolation by the California Department of Fish and Game (CDFG) at 800m resolution. The grid units are presented in millimeters with floating point. Care should be taken in estimating precipitation values at any single point on the map. Precipitation estimated for each grid cell is an average over the entire area of that cell; thus, point precipitation can be estimated at a spatial precision no better than half the resolution of a cell. Accuracy of this data set is based on the original specification of the Defense Mapping Agency (DMA) 1 degree digital elevation models (DEMs). The stated accuracy of the original DEMs is 130m circular error with 90% probability. The Parameter-elevation Regressions on Independent Slopes Model (PRISM) Climate Group works on a range of projects, some of which support the development of spatial climate datasets. These PRISM datasets provide estimates of the basic climate element of precipitation (ppt), or the Daily total precipitation averaged over a month for both rain and melted snow. These datasets are modeled with PRISM using a digital elevation model (DEM) as the predictor grid and provide baselines describing average monthly precipitation between 1981 and 2000 to be used for display and/or analyses requiring spatially distributed monthly or annual precipitation. Grids were modeled on a monthly basis. Annual grids were produced by averaging (temperatures) or summing (precipitation) the monthly grids. California Department of Fish and Wildlife. (2007). Average Monthly Precipitation for May (Inches & Millimeters): California, 1981-2010 (800m). California Department of Fish and Wildlife. Available at: http://purl.stanford.edu/ct784rv5363. There are many methods of interpolating precipitation from monitoring stations to grid points. Some provide estimates of acceptable accuracy in flat terrain, but few have been able to adequately explain the extreme, complex variations in precipitation that occur in mountainous regions. Significant progress in this area has been achieved through the development of PRISM (Parameter-elevation Regressions on Independent Slopes Model). PRISM is an analytical model that uses point data and a digital elevation model (DEM) to generate gridded estimates of monthly and annual precipitation (as well as other climatic parameters). PRISM is well suited to regions with mountainous terrain, because it incorporates a conceptual framework that addresses the spatial scale and pattern of orographic precipitation. This layer is presented in the WGS84 coordinate system for web display purposes. Downloadable data are provided in native coordinate system or projection.

  6. Title: Average Monthly Precipitation for June: California, 1961-1990 (4km)

    Contributors:

    Summary: This raster dataset incorporates a conceptual framework that uniquely addresses the spatial scale and pattern of orographic precipitation. The original PRISM dataset covered the United States. This is a California-only version subsetted from the original data set and converted to California Teale Albers NAD83 using bilinear interpolation by the California Department of Fish and Game (CDFG) at 2.5 arc-minutes resolution (approximately 4km). Care should be taken in estimating precipitation values at any single point on the map. Precipitation estimated for each grid cell is an average over the entire area of that cell; thus, point precipitation can be estimated at a spatial precision no better than half the resolution of a cell. Accuracy of this data set is based on the original specification of the Defense Mapping Agency (DMA) 1 degree digital elevation models (DEMs). The stated accuracy of the original DEMs is 130m circular error with 90% probability. The Parameter-elevation Regressions on Independent Slopes Model (PRISM) Climate Group works on a range of projects, some of which support the development of spatial climate datasets. These PRISM datasets provide estimates of the basic climate element of precipitation (ppt), or the Daily total precipitation averaged over a month for both rain and melted snow. These datasets are modeled with PRISM using a digital elevation model (DEM) as the predictor grid and provide baselines describing average monthly precipitation between 1961 and 1990 to be used for display and/or analyses requiring spatially distributed monthly or annual precipitation. California Department of Fish and Game. (2007). Average Monthly Precipitation for June: California, 1961-1990 (4km). California Department of Fish and Game. Available at: http://purl.stanford.edu/vt457dj3607. There are many methods of interpolating precipitation from monitoring stations to grid points. Some provide estimates of acceptable accuracy in flat terrain, but few have been able to adequately explain the extreme, complex variations in precipitation that occur in mountainous regions. Significant progress in this area has been achieved through the development of PRISM (Parameter-elevation Regressions on Independent Slopes Model). PRISM is an analytical model that uses point data and a digital elevation model (DEM) to generate gridded estimates of monthly and annual precipitation (as well as other climatic parameters). PRISM is well suited to regions with mountainous terrain, because it incorporates a conceptual framework that addresses the spatial scale and pattern of orographic precipitation. This layer is presented in the WGS84 coordinate system for web display purposes. Downloadable data are provided in native coordinate system or projection.

  7. Title: Average Monthly Precipitation for June (Millimeters): California, 1981-2010 (800m)

    Contributors:

    Summary: This raster layer contains the average monthly precipitation levels in millimeters for June 1981-2010. This dataset incorporates a conceptual framework that uniquely addresses the spatial scale and pattern of orographic precipitation. The original PRISM dataset covered the United States. This is a California-only version subsetted from the original data set and converted to California Teale Albers NAD83 using bilinear interpolation by the California Department of Fish and Game (CDFG) at 800m resolution. The grid units are presented in millimeters with floating point. Care should be taken in estimating precipitation values at any single point on the map. Precipitation estimated for each grid cell is an average over the entire area of that cell; thus, point precipitation can be estimated at a spatial precision no better than half the resolution of a cell. Accuracy of this data set is based on the original specification of the Defense Mapping Agency (DMA) 1 degree digital elevation models (DEMs). The stated accuracy of the original DEMs is 130m circular error with 90% probability. The Parameter-elevation Regressions on Independent Slopes Model (PRISM) Climate Group works on a range of projects, some of which support the development of spatial climate datasets. These PRISM datasets provide estimates of the basic climate element of precipitation (ppt), or the Daily total precipitation averaged over a month for both rain and melted snow. These datasets are modeled with PRISM using a digital elevation model (DEM) as the predictor grid and provide baselines describing average monthly precipitation between 1981 and 2000 to be used for display and/or analyses requiring spatially distributed monthly or annual precipitation. Grids were modeled on a monthly basis. Annual grids were produced by averaging (temperatures) or summing (precipitation) the monthly grids. California Department of Fish and Wildlife. (2007). Average Monthly Precipitation for January (Inches & Millimeters): California, 1981-2010 (800m). California Department of Fish and Wildlife. Available at: http://purl.stanford.edu/vt854zj8399. There are many methods of interpolating precipitation from monitoring stations to grid points. Some provide estimates of acceptable accuracy in flat terrain, but few have been able to adequately explain the extreme, complex variations in precipitation that occur in mountainous regions. Significant progress in this area has been achieved through the development of PRISM (Parameter-elevation Regressions on Independent Slopes Model). PRISM is an analytical model that uses point data and a digital elevation model (DEM) to generate gridded estimates of monthly and annual precipitation (as well as other climatic parameters). PRISM is well suited to regions with mountainous terrain, because it incorporates a conceptual framework that addresses the spatial scale and pattern of orographic precipitation. This layer is presented in the WGS84 coordinate system for web display purposes. Downloadable data are provided in native coordinate system or projection.

  8. Title: Average Monthly Precipitation for July (Inches & Millimeters): California, 1981-2010 (800m)

    Contributors:

    Summary: This raster layer contains the average monthly precipitation levels in millimeters and inches for July 1981-2010. This dataset incorporates a conceptual framework that uniquely addresses the spatial scale and pattern of orographic precipitation. The original PRISM dataset covered the United States. This is a California-only version subsetted from the original data set and converted to California Teale Albers NAD83 using bilinear interpolation by the California Department of Fish and Game (CDFG) at 800m resolution. The grid units are presented in millimeters and inches with integers. Care should be taken in estimating precipitation values at any single point on the map. Precipitation estimated for each grid cell is an average over the entire area of that cell; thus, point precipitation can be estimated at a spatial precision no better than half the resolution of a cell. Accuracy of this data set is based on the original specification of the Defense Mapping Agency (DMA) 1 degree digital elevation models (DEMs). The stated accuracy of the original DEMs is 130m circular error with 90% probability. The Parameter-elevation Regressions on Independent Slopes Model (PRISM) Climate Group works on a range of projects, some of which support the development of spatial climate datasets. These PRISM datasets provide estimates of the basic climate element of precipitation (ppt), or the Daily total precipitation averaged over a month for both rain and melted snow. These datasets are modeled with PRISM using a digital elevation model (DEM) as the predictor grid and provide baselines describing average monthly precipitation between 1981 and 2000 to be used for display and/or analyses requiring spatially distributed monthly or annual precipitation. Grids were modeled on a monthly basis. Annual grids were produced by averaging (temperatures) or summing (precipitation) the monthly grids. California Department of Fish and Wildlife. (2007). Average Monthly Precipitation for July (Inches & Millimeters): California, 1981-2010 (800m). California Department of Fish and Wildlife. Available at: http://purl.stanford.edu/mh103sf2209. There are many methods of interpolating precipitation from monitoring stations to grid points. Some provide estimates of acceptable accuracy in flat terrain, but few have been able to adequately explain the extreme, complex variations in precipitation that occur in mountainous regions. Significant progress in this area has been achieved through the development of PRISM (Parameter-elevation Regressions on Independent Slopes Model). PRISM is an analytical model that uses point data and a digital elevation model (DEM) to generate gridded estimates of monthly and annual precipitation (as well as other climatic parameters). PRISM is well suited to regions with mountainous terrain, because it incorporates a conceptual framework that addresses the spatial scale and pattern of orographic precipitation. This layer is presented in the WGS84 coordinate system for web display purposes. Downloadable data are provided in native coordinate system or projection.

  9. Title: Average Monthly Precipitation for October (Inches & Millimeters): California, 1981-2010 (800m)

    Contributors:

    Summary: This raster layer contains the average monthly precipitation levels in millimeters and inches for October 1981-2010. This dataset incorporates a conceptual framework that uniquely addresses the spatial scale and pattern of orographic precipitation. The original PRISM dataset covered the United States. This is a California-only version subsetted from the original data set and converted to California Teale Albers NAD83 using bilinear interpolation by the California Department of Fish and Game (CDFG) at 800m resolution. The grid units are presented in millimeters and inches with integers. Care should be taken in estimating precipitation values at any single point on the map. Precipitation estimated for each grid cell is an average over the entire area of that cell; thus, point precipitation can be estimated at a spatial precision no better than half the resolution of a cell. Accuracy of this data set is based on the original specification of the Defense Mapping Agency (DMA) 1 degree digital elevation models (DEMs). The stated accuracy of the original DEMs is 130m circular error with 90% probability. The Parameter-elevation Regressions on Independent Slopes Model (PRISM) Climate Group works on a range of projects, some of which support the development of spatial climate datasets. These PRISM datasets provide estimates of the basic climate element of precipitation (ppt), or the Daily total precipitation averaged over a month for both rain and melted snow. These datasets are modeled with PRISM using a digital elevation model (DEM) as the predictor grid and provide baselines describing average monthly precipitation between 1981 and 2000 to be used for display and/or analyses requiring spatially distributed monthly or annual precipitation. Grids were modeled on a monthly basis. Annual grids were produced by averaging (temperatures) or summing (precipitation) the monthly grids. California Department of Fish and Wildlife. (2007). Average Monthly Precipitation for October (Inches & Millimeters): California, 1981-2010 (800m). California Department of Fish and Wildlife. Available at: http://purl.stanford.edu/ht201vs0811. There are many methods of interpolating precipitation from monitoring stations to grid points. Some provide estimates of acceptable accuracy in flat terrain, but few have been able to adequately explain the extreme, complex variations in precipitation that occur in mountainous regions. Significant progress in this area has been achieved through the development of PRISM (Parameter-elevation Regressions on Independent Slopes Model). PRISM is an analytical model that uses point data and a digital elevation model (DEM) to generate gridded estimates of monthly and annual precipitation (as well as other climatic parameters). PRISM is well suited to regions with mountainous terrain, because it incorporates a conceptual framework that addresses the spatial scale and pattern of orographic precipitation. This layer is presented in the WGS84 coordinate system for web display purposes. Downloadable data are provided in native coordinate system or projection.

  10. Title: Average Monthly Precipitation for June (Inches): California, 1981-2010 (800m)

    Contributors:

    Summary: This raster layer contains the average monthly precipitation levels in inches for June 1981-2010. This dataset incorporates a conceptual framework that uniquely addresses the spatial scale and pattern of orographic precipitation. The original PRISM dataset covered the United States. This is a California-only version subsetted from the original data set and converted to California Teale Albers NAD83 using bilinear interpolation by the California Department of Fish and Game (CDFG) at 800m resolution. The grid units are presented in inches with floating point. Care should be taken in estimating precipitation values at any single point on the map. Precipitation estimated for each grid cell is an average over the entire area of that cell; thus, point precipitation can be estimated at a spatial precision no better than half the resolution of a cell. Accuracy of this data set is based on the original specification of the Defense Mapping Agency (DMA) 1 degree digital elevation models (DEMs). The stated accuracy of the original DEMs is 130m circular error with 90% probability. The Parameter-elevation Regressions on Independent Slopes Model (PRISM) Climate Group works on a range of projects, some of which support the development of spatial climate datasets. These PRISM datasets provide estimates of the basic climate element of precipitation (ppt), or the Daily total precipitation averaged over a month for both rain and melted snow. These datasets are modeled with PRISM using a digital elevation model (DEM) as the predictor grid and provide baselines describing average monthly precipitation between 1981 and 2000 to be used for display and/or analyses requiring spatially distributed monthly or annual precipitation. Grids were modeled on a monthly basis. Annual grids were produced by averaging (temperatures) or summing (precipitation) the monthly grids. California Department of Fish and Wildlife. (2007). Average Monthly Precipitation for June (Inches): California, 1981-2010 (800m). California Department of Fish and Wildlife. http://purl.stanford.edu/ht323mx8272. There are many methods of interpolating precipitation from monitoring stations to grid points. Some provide estimates of acceptable accuracy in flat terrain, but few have been able to adequately explain the extreme, complex variations in precipitation that occur in mountainous regions. Significant progress in this area has been achieved through the development of PRISM (Parameter-elevation Regressions on Independent Slopes Model). PRISM is an analytical model that uses point data and a digital elevation model (DEM) to generate gridded estimates of monthly and annual precipitation (as well as other climatic parameters). PRISM is well suited to regions with mountainous terrain, because it incorporates a conceptual framework that addresses the spatial scale and pattern of orographic precipitation. This layer is presented in the WGS84 coordinate system for web display purposes. Downloadable data are provided in native coordinate system or projection.

  11. Title: Average Monthly Precipitation for October (Millimeters): California, 1981-2010 (800m)

    Contributors:

    Summary: This raster layer contains the average monthly precipitation levels in millimeters for October 1981-2010. This dataset incorporates a conceptual framework that uniquely addresses the spatial scale and pattern of orographic precipitation. The original PRISM dataset covered the United States. This is a California-only version subsetted from the original data set and converted to California Teale Albers NAD83 using bilinear interpolation by the California Department of Fish and Game (CDFG) at 800m resolution. The grid units are presented in millimeters with floating point. Care should be taken in estimating precipitation values at any single point on the map. Precipitation estimated for each grid cell is an average over the entire area of that cell; thus, point precipitation can be estimated at a spatial precision no better than half the resolution of a cell. Accuracy of this data set is based on the original specification of the Defense Mapping Agency (DMA) 1 degree digital elevation models (DEMs). The stated accuracy of the original DEMs is 130m circular error with 90% probability. The Parameter-elevation Regressions on Independent Slopes Model (PRISM) Climate Group works on a range of projects, some of which support the development of spatial climate datasets. These PRISM datasets provide estimates of the basic climate element of precipitation (ppt), or the Daily total precipitation averaged over a month for both rain and melted snow. These datasets are modeled with PRISM using a digital elevation model (DEM) as the predictor grid and provide baselines describing average monthly precipitation between 1981 and 2000 to be used for display and/or analyses requiring spatially distributed monthly or annual precipitation. Grids were modeled on a monthly basis. Annual grids were produced by averaging (temperatures) or summing (precipitation) the monthly grids. California Department of Fish and Wildlife. (2007). Average Monthly Precipitation for October (Inches & Millimeters): California, 1981-2010 (800m). California Department of Fish and Wildlife. Available at: http://purl.stanford.edu/kt315fy3554. There are many methods of interpolating precipitation from monitoring stations to grid points. Some provide estimates of acceptable accuracy in flat terrain, but few have been able to adequately explain the extreme, complex variations in precipitation that occur in mountainous regions. Significant progress in this area has been achieved through the development of PRISM (Parameter-elevation Regressions on Independent Slopes Model). PRISM is an analytical model that uses point data and a digital elevation model (DEM) to generate gridded estimates of monthly and annual precipitation (as well as other climatic parameters). PRISM is well suited to regions with mountainous terrain, because it incorporates a conceptual framework that addresses the spatial scale and pattern of orographic precipitation. This layer is presented in the WGS84 coordinate system for web display purposes. Downloadable data are provided in native coordinate system or projection.

  12. Title: Average Monthly Precipitation for May (Inches): California, 1981-2010 (800m)

    Contributors:

    Summary: This raster layer contains the average monthly precipitation levels in inches for May 1981-2010. This dataset incorporates a conceptual framework that uniquely addresses the spatial scale and pattern of orographic precipitation. The original PRISM dataset covered the United States. This is a California-only version subsetted from the original data set and converted to California Teale Albers NAD83 using bilinear interpolation by the California Department of Fish and Game (CDFG) at 800m resolution. The grid units are presented in inches with floating point. Care should be taken in estimating precipitation values at any single point on the map. Precipitation estimated for each grid cell is an average over the entire area of that cell; thus, point precipitation can be estimated at a spatial precision no better than half the resolution of a cell. Accuracy of this data set is based on the original specification of the Defense Mapping Agency (DMA) 1 degree digital elevation models (DEMs). The stated accuracy of the original DEMs is 130m circular error with 90% probability. The Parameter-elevation Regressions on Independent Slopes Model (PRISM) Climate Group works on a range of projects, some of which support the development of spatial climate datasets. These PRISM datasets provide estimates of the basic climate element of precipitation (ppt), or the Daily total precipitation averaged over a month for both rain and melted snow. These datasets are modeled with PRISM using a digital elevation model (DEM) as the predictor grid and provide baselines describing average monthly precipitation between 1981 and 2000 to be used for display and/or analyses requiring spatially distributed monthly or annual precipitation. Grids were modeled on a monthly basis. Annual grids were produced by averaging (temperatures) or summing (precipitation) the monthly grids. California Department of Fish and Wildlife. (2007). Average Monthly Precipitation for May (Inches): California, 1981-2010 (800m). California Department of Fish and Wildlife. Available at: http://purl.stanford.edu/ch453bh1240. There are many methods of interpolating precipitation from monitoring stations to grid points. Some provide estimates of acceptable accuracy in flat terrain, but few have been able to adequately explain the extreme, complex variations in precipitation that occur in mountainous regions. Significant progress in this area has been achieved through the development of PRISM (Parameter-elevation Regressions on Independent Slopes Model). PRISM is an analytical model that uses point data and a digital elevation model (DEM) to generate gridded estimates of monthly and annual precipitation (as well as other climatic parameters). PRISM is well suited to regions with mountainous terrain, because it incorporates a conceptual framework that addresses the spatial scale and pattern of orographic precipitation. This layer is presented in the WGS84 coordinate system for web display purposes. Downloadable data are provided in native coordinate system or projection.

  13. Title: Average Monthly Precipitation for September: California, 1961-1990 (4km)

    Contributors:

    Summary: This raster dataset incorporates a conceptual framework that uniquely addresses the spatial scale and pattern of orographic precipitation. The original PRISM dataset covered the United States. This is a California-only version subsetted from the original data set and converted to California Teale Albers NAD83 using bilinear interpolation by the California Department of Fish and Game (CDFG) at 2.5 arc-minutes resolution (approximately 4km). Care should be taken in estimating precipitation values at any single point on the map. Precipitation estimated for each grid cell is an average over the entire area of that cell; thus, point precipitation can be estimated at a spatial precision no better than half the resolution of a cell. Accuracy of this data set is based on the original specification of the Defense Mapping Agency (DMA) 1 degree digital elevation models (DEMs). The stated accuracy of the original DEMs is 130m circular error with 90% probability. The Parameter-elevation Regressions on Independent Slopes Model (PRISM) Climate Group works on a range of projects, some of which support the development of spatial climate datasets. These PRISM datasets provide estimates of the basic climate element of precipitation (ppt), or the Daily total precipitation averaged over a month for both rain and melted snow. These datasets are modeled with PRISM using a digital elevation model (DEM) as the predictor grid and provide baselines describing average monthly precipitation between 1961 and 1990 to be used for display and/or analyses requiring spatially distributed monthly or annual precipitation. California Department of Fish and Game. (2007). Average Monthly Precipitation for September: California, 1961-1990 (4km). California Department of Fish and Game. Available at: http://purl.stanford.edu/jb595jm4002. There are many methods of interpolating precipitation from monitoring stations to grid points. Some provide estimates of acceptable accuracy in flat terrain, but few have been able to adequately explain the extreme, complex variations in precipitation that occur in mountainous regions. Significant progress in this area has been achieved through the development of PRISM (Parameter-elevation Regressions on Independent Slopes Model). PRISM is an analytical model that uses point data and a digital elevation model (DEM) to generate gridded estimates of monthly and annual precipitation (as well as other climatic parameters). PRISM is well suited to regions with mountainous terrain, because it incorporates a conceptual framework that addresses the spatial scale and pattern of orographic precipitation. This layer is presented in the WGS84 coordinate system for web display purposes. Downloadable data are provided in native coordinate system or projection.

  14. Title: Average Monthly Precipitation for November (Inches): California, 1981-2010 (800m)

    Contributors:

    Summary: This raster layer contains the average monthly precipitation levels in inches for November 1981-2010. This dataset incorporates a conceptual framework that uniquely addresses the spatial scale and pattern of orographic precipitation. The original PRISM dataset covered the United States. This is a California-only version subsetted from the original data set and converted to California Teale Albers NAD83 using bilinear interpolation by the California Department of Fish and Game (CDFG) at 800m resolution. The grid units are presented in inches with floating point. Care should be taken in estimating precipitation values at any single point on the map. Precipitation estimated for each grid cell is an average over the entire area of that cell; thus, point precipitation can be estimated at a spatial precision no better than half the resolution of a cell. Accuracy of this data set is based on the original specification of the Defense Mapping Agency (DMA) 1 degree digital elevation models (DEMs). The stated accuracy of the original DEMs is 130m circular error with 90% probability. The Parameter-elevation Regressions on Independent Slopes Model (PRISM) Climate Group works on a range of projects, some of which support the development of spatial climate datasets. These PRISM datasets provide estimates of the basic climate element of precipitation (ppt), or the Daily total precipitation averaged over a month for both rain and melted snow. These datasets are modeled with PRISM using a digital elevation model (DEM) as the predictor grid and provide baselines describing average monthly precipitation between 1981 and 2000 to be used for display and/or analyses requiring spatially distributed monthly or annual precipitation. Grids were modeled on a monthly basis. Annual grids were produced by averaging (temperatures) or summing (precipitation) the monthly grids. California Department of Fish and Wildlife. (2007). Average Monthly Precipitation for November (Inches): California, 1981-2010 (800m). California Department of Fish and Wildlife. Available at: http://purl.stanford.edu/jb494sv2423. There are many methods of interpolating precipitation from monitoring stations to grid points. Some provide estimates of acceptable accuracy in flat terrain, but few have been able to adequately explain the extreme, complex variations in precipitation that occur in mountainous regions. Significant progress in this area has been achieved through the development of PRISM (Parameter-elevation Regressions on Independent Slopes Model). PRISM is an analytical model that uses point data and a digital elevation model (DEM) to generate gridded estimates of monthly and annual precipitation (as well as other climatic parameters). PRISM is well suited to regions with mountainous terrain, because it incorporates a conceptual framework that addresses the spatial scale and pattern of orographic precipitation. This layer is presented in the WGS84 coordinate system for web display purposes. Downloadable data are provided in native coordinate system or projection.

  15. Title: Average Monthly Precipitation for April (Inches): California, 1981-2010 (800m)

    Contributors:

    Summary: This raster layer contains the average monthly precipitation levels in inches for April 1981-2010. This dataset incorporates a conceptual framework that uniquely addresses the spatial scale and pattern of orographic precipitation. The original PRISM dataset covered the United States. This is a California-only version subsetted from the original data set and converted to California Teale Albers NAD83 using bilinear interpolation by the California Department of Fish and Game (CDFG) at 800m resolution. The grid units are presented in inches with floating point. Care should be taken in estimating precipitation values at any single point on the map. Precipitation estimated for each grid cell is an average over the entire area of that cell; thus, point precipitation can be estimated at a spatial precision no better than half the resolution of a cell. Accuracy of this data set is based on the original specification of the Defense Mapping Agency (DMA) 1 degree digital elevation models (DEMs). The stated accuracy of the original DEMs is 130m circular error with 90% probability. The Parameter-elevation Regressions on Independent Slopes Model (PRISM) Climate Group works on a range of projects, some of which support the development of spatial climate datasets. These PRISM datasets provide estimates of the basic climate element of precipitation (ppt), or the Daily total precipitation averaged over a month for both rain and melted snow. These datasets are modeled with PRISM using a digital elevation model (DEM) as the predictor grid and provide baselines describing average monthly precipitation between 1981 and 2000 to be used for display and/or analyses requiring spatially distributed monthly or annual precipitation. Grids were modeled on a monthly basis. Annual grids were produced by averaging (temperatures) or summing (precipitation) the monthly grids. California Department of Fish and Wildlife. (2007). Average Monthly Precipitation for April: California, 1981-2010 (800m). California Department of Fish and Wildlife. Available at: http://purl.stanford.edu/jb752mv4420 There are many methods of interpolating precipitation from monitoring stations to grid points. Some provide estimates of acceptable accuracy in flat terrain, but few have been able to adequately explain the extreme, complex variations in precipitation that occur in mountainous regions. Significant progress in this area has been achieved through the development of PRISM (Parameter-elevation Regressions on Independent Slopes Model). PRISM is an analytical model that uses point data and a digital elevation model (DEM) to generate gridded estimates of monthly and annual precipitation (as well as other climatic parameters). PRISM is well suited to regions with mountainous terrain, because it incorporates a conceptual framework that addresses the spatial scale and pattern of orographic precipitation. This layer is presented in the WGS84 coordinate system for web display purposes. Downloadable data are provided in native coordinate system or projection.

  16. Title: Average Monthly Precipitation for September (Millimeters): California, 1981-2010 (800m)

    Contributors:

    Summary: This raster layer contains the average monthly precipitation levels in millimeters for September 1981-2010. This dataset incorporates a conceptual framework that uniquely addresses the spatial scale and pattern of orographic precipitation. The original PRISM dataset covered the United States. This is a California-only version subsetted from the original data set and converted to California Teale Albers NAD83 using bilinear interpolation by the California Department of Fish and Game (CDFG) at 800m resolution. The grid units are presented in millimeters with floating point. Care should be taken in estimating precipitation values at any single point on the map. Precipitation estimated for each grid cell is an average over the entire area of that cell; thus, point precipitation can be estimated at a spatial precision no better than half the resolution of a cell. Accuracy of this data set is based on the original specification of the Defense Mapping Agency (DMA) 1 degree digital elevation models (DEMs). The stated accuracy of the original DEMs is 130m circular error with 90% probability. The Parameter-elevation Regressions on Independent Slopes Model (PRISM) Climate Group works on a range of projects, some of which support the development of spatial climate datasets. These PRISM datasets provide estimates of the basic climate element of precipitation (ppt), or the Daily total precipitation averaged over a month for both rain and melted snow. These datasets are modeled with PRISM using a digital elevation model (DEM) as the predictor grid and provide baselines describing average monthly precipitation between 1981 and 2000 to be used for display and/or analyses requiring spatially distributed monthly or annual precipitation. Grids were modeled on a monthly basis. Annual grids were produced by averaging (temperatures) or summing (precipitation) the monthly grids. California Department of Fish and Wildlife. (2007). Average Monthly Precipitation for September (Inches & Millimeters): California, 1981-2010 (800m). California Department of Fish and Wildlife. Available at: http://purl.stanford.edu/bh445pg1237. There are many methods of interpolating precipitation from monitoring stations to grid points. Some provide estimates of acceptable accuracy in flat terrain, but few have been able to adequately explain the extreme, complex variations in precipitation that occur in mountainous regions. Significant progress in this area has been achieved through the development of PRISM (Parameter-elevation Regressions on Independent Slopes Model). PRISM is an analytical model that uses point data and a digital elevation model (DEM) to generate gridded estimates of monthly and annual precipitation (as well as other climatic parameters). PRISM is well suited to regions with mountainous terrain, because it incorporates a conceptual framework that addresses the spatial scale and pattern of orographic precipitation. This layer is presented in the WGS84 coordinate system for web display purposes. Downloadable data are provided in native coordinate system or projection.

  17. Title: Average Monthly Precipitation for February (Inches): California, 1981-2010 (800m)

    Contributors:

    Summary: This raster layer contains the average monthly precipitation levels in inches for February 1981-2010. This dataset incorporates a conceptual framework that uniquely addresses the spatial scale and pattern of orographic precipitation. The original PRISM dataset covered the United States. This is a California-only version subsetted from the original data set and converted to California Teale Albers NAD83 using bilinear interpolation by the California Department of Fish and Game (CDFG) at 800m resolution. The grid units are presented in inches with floating point. Care should be taken in estimating precipitation values at any single point on the map. Precipitation estimated for each grid cell is an average over the entire area of that cell; thus, point precipitation can be estimated at a spatial precision no better than half the resolution of a cell. Accuracy of this data set is based on the original specification of the Defense Mapping Agency (DMA) 1 degree digital elevation models (DEMs). The stated accuracy of the original DEMs is 130m circular error with 90% probability. The Parameter-elevation Regressions on Independent Slopes Model (PRISM) Climate Group works on a range of projects, some of which support the development of spatial climate datasets. These PRISM datasets provide estimates of the basic climate element of precipitation (ppt), or the Daily total precipitation averaged over a month for both rain and melted snow. These datasets are modeled with PRISM using a digital elevation model (DEM) as the predictor grid and provide baselines describing average monthly precipitation between 1981 and 2000 to be used for display and/or analyses requiring spatially distributed monthly or annual precipitation. Grids were modeled on a monthly basis. Annual grids were produced by averaging (temperatures) or summing (precipitation) the monthly grids. California Department of Fish and Wildlife. (2007). Average Monthly Precipitation for February: California, 1981-2010 (800m). California Department of Fish and Wildlife. Available at: http://purl.stanford.edu/fq520vd0066. There are many methods of interpolating precipitation from monitoring stations to grid points. Some provide estimates of acceptable accuracy in flat terrain, but few have been able to adequately explain the extreme, complex variations in precipitation that occur in mountainous regions. Significant progress in this area has been achieved through the development of PRISM (Parameter-elevation Regressions on Independent Slopes Model). PRISM is an analytical model that uses point data and a digital elevation model (DEM) to generate gridded estimates of monthly and annual precipitation (as well as other climatic parameters). PRISM is well suited to regions with mountainous terrain, because it incorporates a conceptual framework that addresses the spatial scale and pattern of orographic precipitation. This layer is presented in the WGS84 coordinate system for web display purposes. Downloadable data are provided in native coordinate system or projection.

  18. Title: Average Monthly Precipitation for August (Millimeters): California, 1981-2010 (800m)

    Contributors:

    Summary: This raster layer contains the average monthly precipitation levels in millimeters for August 1981-2010. This dataset incorporates a conceptual framework that uniquely addresses the spatial scale and pattern of orographic precipitation. The original PRISM dataset covered the United States. This is a California-only version subsetted from the original data set and converted to California Teale Albers NAD83 using bilinear interpolation by the California Department of Fish and Game (CDFG) at 800m resolution. The grid units are presented in millimeters with floating point. Care should be taken in estimating precipitation values at any single point on the map. Precipitation estimated for each grid cell is an average over the entire area of that cell; thus, point precipitation can be estimated at a spatial precision no better than half the resolution of a cell. Accuracy of this data set is based on the original specification of the Defense Mapping Agency (DMA) 1 degree digital elevation models (DEMs). The stated accuracy of the original DEMs is 130m circular error with 90% probability. The Parameter-elevation Regressions on Independent Slopes Model (PRISM) Climate Group works on a range of projects, some of which support the development of spatial climate datasets. These PRISM datasets provide estimates of the basic climate element of precipitation (ppt), or the Daily total precipitation averaged over a month for both rain and melted snow. These datasets are modeled with PRISM using a digital elevation model (DEM) as the predictor grid and provide baselines describing average monthly precipitation between 1981 and 2000 to be used for display and/or analyses requiring spatially distributed monthly or annual precipitation. Grids were modeled on a monthly basis. Annual grids were produced by averaging (temperatures) or summing (precipitation) the monthly grids. California Department of Fish and Wildlife. (2007). Average Monthly Precipitation for January (Inches & Millimeters): California, 1981-2010 (800m). California Department of Fish and Wildlife. Available at: http://purl.stanford.edu/nm888qj4636. There are many methods of interpolating precipitation from monitoring stations to grid points. Some provide estimates of acceptable accuracy in flat terrain, but few have been able to adequately explain the extreme, complex variations in precipitation that occur in mountainous regions. Significant progress in this area has been achieved through the development of PRISM (Parameter-elevation Regressions on Independent Slopes Model). PRISM is an analytical model that uses point data and a digital elevation model (DEM) to generate gridded estimates of monthly and annual precipitation (as well as other climatic parameters). PRISM is well suited to regions with mountainous terrain, because it incorporates a conceptual framework that addresses the spatial scale and pattern of orographic precipitation. This layer is presented in the WGS84 coordinate system for web display purposes. Downloadable data are provided in native coordinate system or projection.

  19. Title: Average Annual Precipitation: California, 1961-1990 (4km)

    Contributors:

    Summary: This raster dataset incorporates a conceptual framework that uniquely addresses the spatial scale and pattern of orographic precipitation. The original PRISM dataset covered the United States. This is a California-only version subsetted from the original data set and converted to California Teale Albers NAD83 using bilinear interpolation by the California Department of Fish and Game (CDFG) at 2.5 arc-minutes resolution (approximately 4km). Care should be taken in estimating precipitation values at any single point on the map. Precipitation estimated for each grid cell is an average over the entire area of that cell; thus, point precipitation can be estimated at a spatial precision no better than half the resolution of a cell. Accuracy of this data set is based on the original specification of the Defense Mapping Agency (DMA) 1 degree digital elevation models (DEMs). The stated accuracy of the original DEMs is 130m circular error with 90% probability. The Parameter-elevation Regressions on Independent Slopes Model (PRISM) Climate Group works on a range of projects, some of which support the development of spatial climate datasets. These PRISM datasets provide estimates of the basic climate element of precipitation (ppt), or the daily total precipitation averaged over a year for both rain and melted snow. These datasets are modeled with PRISM using a digital elevation model (DEM) as the predictor grid and provide baselines describing average annual precipitation between 1961 and 1990 to be used for display and/or analyses requiring spatially distributed annual precipitation. California Department of Fish and Game, 2007. Sacramento CA: Biogeographic Data Branch. There are many methods of interpolating precipitation from monitoring stations to grid points. Some provide estimates of acceptable accuracy in flat terrain, but few have been able to adequately explain the extreme, complex variations in precipitation that occur in mountainous regions. Significant progress in this area has been achieved through the development of PRISM (Parameter-elevation Regressions on Independent Slopes Model). PRISM is an analytical model that uses point data and a digital elevation model (DEM) to generate gridded estimates of monthly and annual precipitation (as well as other climatic parameters). PRISM is well suited to regions with mountainous terrain, because it incorporates a conceptual framework that addresses the spatial scale and pattern of orographic precipitation. This layer is presented in the WGS84 coordinate system for web display purposes. Downloadable data are provided in native coordinate system or projection.

  20. Title: Average Monthly Precipitation for October: California, 1961-1990 (4km)

    Contributors:

    Summary: This raster dataset incorporates a conceptual framework that uniquely addresses the spatial scale and pattern of orographic precipitation. The original PRISM dataset covered the United States. This is a California-only version subsetted from the original data set and converted to California Teale Albers NAD83 using bilinear interpolation by the California Department of Fish and Game (CDFG) at 2.5 arc-minutes resolution (approximately 4km). Care should be taken in estimating precipitation values at any single point on the map. Precipitation estimated for each grid cell is an average over the entire area of that cell; thus, point precipitation can be estimated at a spatial precision no better than half the resolution of a cell. Accuracy of this data set is based on the original specification of the Defense Mapping Agency (DMA) 1 degree digital elevation models (DEMs). The stated accuracy of the original DEMs is 130m circular error with 90% probability. The Parameter-elevation Regressions on Independent Slopes Model (PRISM) Climate Group works on a range of projects, some of which support the development of spatial climate datasets. These PRISM datasets provide estimates of the basic climate element of precipitation (ppt), or the Daily total precipitation averaged over a month for both rain and melted snow. These datasets are modeled with PRISM using a digital elevation model (DEM) as the predictor grid and provide baselines describing average monthly precipitation between 1961 and 1990 to be used for display and/or analyses requiring spatially distributed monthly or annual precipitation. California Department of Fish and Game. (2007). Average Monthly Precipitation for October: California, 1961-1990 (4km). California Department of Fish and Game. Available at: http://purl.stanford.edu/xn573mj4742. There are many methods of interpolating precipitation from monitoring stations to grid points. Some provide estimates of acceptable accuracy in flat terrain, but few have been able to adequately explain the extreme, complex variations in precipitation that occur in mountainous regions. Significant progress in this area has been achieved through the development of PRISM (Parameter-elevation Regressions on Independent Slopes Model). PRISM is an analytical model that uses point data and a digital elevation model (DEM) to generate gridded estimates of monthly and annual precipitation (as well as other climatic parameters). PRISM is well suited to regions with mountainous terrain, because it incorporates a conceptual framework that addresses the spatial scale and pattern of orographic precipitation. This layer is presented in the WGS84 coordinate system for web display purposes. Downloadable data are provided in native coordinate system or projection.

Need help?

Ask GIS