1,521 results returned
-
Title: Habitat: Offshore of Tomales Point, California, 2014
- Polygon data
- 2015
- Not owned by MIT (Owned by Stanford)
- Greene, H. G.
- Endris, Charles A.
- Dieter, Bryan E.
- Golden, Nadine E.
- Moss Landing Marine Laboratories
Summary: This polygon shapefile depicts potential benthic habitats within the offshore area of Tomales Point, California. Using multibeam echosounder (MBES) bathymetry and backscatter data, potential marine benthic habitat maps were constructed. The habitats were based on substrate types and documented or "ground truthed" using underwater video images and seafloor samples obtained by the USGS. These maps display various habitat types that range from flat, soft, unconsolidated sediment-covered seafloor to hard, deformed (folded), or highly rugose and differentially eroded bedrock exposures. Rugged, high-relief, rocky outcrops that have been eroded to form ledges and small caves are ideal habitat for rockfish (Sebastes spp.) and other bottom fish such as lingcod (Ophiodon elongatus). Please refer to Greene and others (2007) for more information regarding the Benthic Marine Potential Habitat Classification Scheme and the codes used to represent various seafloor features. A map that shows these data is published in Open-File Report 2015-1088, "California State Waters Map Series--Offshore of Tomales Point, California." This layer is part of USGS Data Series 781. In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP) to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats and geology within the 3-nautical-mile limit of California's State Waters. CSMP has divided coastal California into 110 map blocks, each to be published individually as United States Geological Survey Open-File Reports (OFRs) or Scientific Investigations Maps (SIMs) at a scale of 1:24,000. Maps display seafloor morphology and character, identify potential marine benthic habitats and illustrate both the seafloor geology and shallow (to about 100 m) subsurface geology. Data layers for bathymetry, bathymetric contours, acoustic backscatter, seafloor character, potential benthic habitat and offshore geology were created for each map block, as well as regional-scale data layers for sediment thickness, depth to transition, transgressive contours, isopachs, predicted distributions of benthic macro-invertebrates and visual observations of benthic habitat from video cruises over the entire state. The purpose of this work is to construct nine potential marine benthic habitat maps characterized after Greene et al. (1999, 2007). These habitat maps are constructed in the same manner as the maps completed for phase I of the California Seafloor Mapping Program (CSMP). These data are intended for science researchers, students, policy makers, and the general public. This information is not intended for navigational purposes.The data can be used with geographic information systems (GIS) software to display geologic and oceanographic information. Additionally, this coverage can provide a geologic map for the public and geoscience community to aid in assessments and mitigation of geologic hazards in the coastal region and sufficient geologic information for land-use and land-management decisions both onshore and offshore. This information is not intended for navigational purposes. Dieter, B.E., Greene, H.G., and Endris, C.A. (2014). Habitat: Offshore of Tomales Point, California, 2014. California State Waters Map Series Data Catalog: U.S. Geological Survey Data Series 781. Available at: http://purl.stanford.edu/vt919yw7254. Interpretation and polygon delineation of habitats performed at scales from 1:2000 to 1:5000. References Cited: Greene, H.G., Bizzarro, J.J., O'Connell, V.M., and Brylinsky, C.K., 2007, Construction of digital potential marine benthic habitat maps using a coded classification scheme and its application, in Todd, B.J., and Greene, H.G., eds., Mapping the seafloor for habitat characterization: Geological Association of Canada Special Paper 47, p. 141-155. This layer is presented in the WGS84 coordinate system for web display purposes. Downloadable data are provided in native coordinate system or projection.
-
Title: Habitat: Offshore of Refugio Beach, California, 2015
- Polygon data
- 2015
- Not owned by MIT (Owned by Stanford)
Summary: This polygon shapefile contains potential benthic habitats for the offshore area of Refugio Beach, California. A map that show these data are published in Scientific Investigations Map 3319, "California State Waters Map Series--Offshore of Refugio Beach, California." This layer is part of USGS Data Series 781. In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP) to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats and geology within the 3-nautical-mile limit of California's State Waters. CSMP has divided coastal California into 110 map blocks, each to be published individually as United States Geological Survey Open-File Reports (OFRs) or Scientific Investigations Maps (SIMs) at a scale of 1:24,000. Maps display seafloor morphology and character, identify potential marine benthic habitats and illustrate both the seafloor geology and shallow (to about 100 m) subsurface geology. Data layers for bathymetry, bathymetric contours, acoustic backscatter, seafloor character, potential benthic habitat and offshore geology were created for each map block, as well as regional-scale data layers for sediment thickness, depth to transition, transgressive contours, isopachs, predicted distributions of benthic macro-invertebrates and visual observations of benthic habitat from video cruises over the entire state. The purpose of this work is to construct nine potential marine benthic habitat maps characterized after Greene et al. (1999, 2007). These habitat maps are constructed in the same manner as the maps completed for phase I of the California Seafloor Mapping Program (CSMP). These data are intended for science researchers, students, policy makers, and the general public. This information is not intended for navigational purposes.The data can be used with geographic information systems (GIS) software to display geologic and oceanographic information. Additionally, this coverage can provide a geologic map for the public and geoscience community to aid in assessments and mitigation of geologic hazards in the coastal region and sufficient geologic information for land-use and land-management decisions both onshore and offshore. This information is not intended for navigational purposes. Endris, C.A., Greene, H.G. (2015). Habitat: Offshore of Refugio Beach, California, 2015. California State Waters Map Series Data Catalog: U.S. Geological Survey Data Series 781. Available at: http://purl.stanford.edu/nh727vv9654. Data used for the creation of the potential marine benthic habitat interpretation consists of multibeam bathymetry, acoustic backscatter, sediment samples, camera-sled imagery, and existing geologic and seafloor interpretive maps. All data were compiled and displayed for interpretation using ESRI ArcGIS software, ArcMap v.9.3. The process utilizes editing a shapefile within ArcMap, beginning with the construction of polygons to delineate benthic features. A feature is an area with common characteristics which can be characterized as a single potential habitat type. The boundaries and extents of these features were determined from the bathymetric data. Generally, interpretations were made at scales ranging between 1:2,000 and 1:5,000. The USGS kindly provided the Center for Habitat Studies with a geodatabase consisting of feature datasets delineating geologic features and attributes for the Santa Barbara Channel. Some of the delineated polygons were preserved as part of the potential marine benthic habitat characterization. However, the Greene et. al (2007) code was used in attributing the dataset and additional polygons were added using the methods outlined below. High resolution multibeam sonar data in the form of bathymetric depth grids (seafloor digital elevation models, referred to as the "bathymetry") were the primary data used in the interpretation of potential habitat types. Shaded relief imagery ("hillshade") allows for visualization of the terrain and interpretation of submarine landforms. Based on these hillshades, areas of rock were identified by their often sharply defined edges and high relative relief; these may be contiguous outcrops, isolated portions of outcrop protruding through sediment cover (pinnacles), or isolated boulders. Although these types of features can be confidently characterized as exposed rock, it is not uncommon to find areas within or around the rocky feature that appear to be covered by a thin veneer of sediment. These areas are identified as "mixed" induration, containing both rock and sediment. Broad areas of the seafloor lacking sharp and angular characteristics are considered to be sediment. Sedimentary features may contain erosional or depositional characteristics recognizable in the bathymetry, such as dynamic bedforms (dunes or sand waves). General morphologic features such as scours, mounds, and depressions were also identified using the hillshade relief imagery. The combination of acoustic backscatter data and "groundtruthed" sediment samples were used to delineate seafloor sediment types within areas identified as "soft (s)" induration. Initially, groundtruth data, in the form of grab sample descriptions and average grain size measurements, were categorized into four grain-size categories: mud (m), muddy sand (s/m), sand (s), and sandy gravel (s/g). Backscatter data was then classified into four intensity categories (low, med, high, very high) that are assumed to correspond to relative grain sizes. The aim was to develop an intensity classification of the seafloor that correlated with the data collected from the sediment samples. Thus, the combination of remotely observed data (acoustic backscatter) and directly observed data (sediment grab samples) translates to higher confidence in our ability to interpret broad areas of the seafloor. Nonetheless, we caution against using our sediment type interpretations as anything more than "best-guess" due to the following issues: characterization of contiguous sediment bodies is a difficult procedure since even small areas can exhibit a wide spectrum of backscatter intensity values that lack distinct boundaries; backscatter intensity can be affected by depth, vegetation, water column conditions, and seafloor relief; and directly observed sediment data, in the form of sediment samples, represents a very small area relative to remotely observed data, requiring broad areas of interpolation. Please refer to Greene et al. (2007) for more information regarding the Benthic Marine Potential Habitat Classification Scheme and the codes used to represent various seafloor features. References Cited: Greene, H.G., Yoklavich, M.M., Starr, R.M., O'Connell, V.M., Wakefield, W.W., Sullivan, D.E., McRea, J.E., Jr., and Cailliet, G.M., 1999, A classification scheme for deep seafloor habitats: Oceanologica Acta, v. 22, no. 6, p. 663-678. Greene, H.G., Bizzarro, J.J., O'Connell, V.M., and Brylinsky, C.K., 2007, Construction of digital potential marine benthic habitat maps using a coded classification scheme and its application, in Todd, B.J., and Greene, H.G., eds., Mapping the seafloor for habitat characterization: Geological Association of Canada Special Paper 47, p. 141-155. This layer is presented in the WGS84 coordinate system for web display purposes. Downloadable data are provided in native coordinate system or projection.
-
Title: Habitat: Offshore of Bolinas, California, 2013
- Polygon data
- 2014
- Not owned by MIT (Owned by Stanford)
- Endris, Charles A.
- Dieter, Bryan E.
- Greene, H. G.
- Golden, Nadine E.
- Moss Landing Marine Laboratories
Summary: This polygon shapefile represents potential benthic habitats within the offshore area of Bolinas, California. Using multibeam echosounder (MBES) bathymetry and backscatter data, potential marine benthic habitat maps were constructed. The habitats were based on substrate types and documented or "ground truthed" using underwater video images and seafloor samples obtained by the USGS. These maps display various habitat types that range from flat, soft, unconsolidated sediment-covered seafloor to hard, deformed (folded), or highly rugose and differentially eroded bedrock exposures. Rugged, high-relief, rocky outcrops that have been eroded to form ledges and small caves are ideal habitat for rockfish (Sebastes spp.) and other bottom fish such as lingcod (Ophiodon elongatus). Habitat map is presented in a map format generated in a GIS (ArcMap), and both digital and hard-copy versions will be produced. This work is one of nine potential marine benthic habitat maps characterized after Greene and others (1999, 2007). This layer is part of USGS Data Series 781. In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP) to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats and geology within the 3-nautical-mile limit of California's State Waters. CSMP has divided coastal California into 110 map blocks, each to be published individually as United States Geological Survey Open-File Reports (OFRs) or Scientific Investigations Maps (SIMs) at a scale of 1:24,000. Maps display seafloor morphology and character, identify potential marine benthic habitats and illustrate both the seafloor geology and shallow (to about 100 m) subsurface geology. Data layers for bathymetry, bathymetric contours, acoustic backscatter, seafloor character, potential benthic habitat and offshore geology were created for each map block, as well as regional-scale data layers for sediment thickness, depth to transition, transgressive contours, isopachs, predicted distributions of benthic macro-invertebrates and visual observations of benthic habitat from video cruises over the entire state. These data are intended for science researchers, students, policy makers, and the general public. This information is not intended for navigational purposes.The data can be used with geographic information systems (GIS) software to display geologic and oceanographic information. Additionally, this coverage can provide a geologic map for the public and geoscience community to aid in assessments and mitigation of geologic hazards in the coastal region and sufficient geologic information for land-use and land-management decisions both onshore and offshore. This information is not intended for navigational purposes. Dieter, B.E., Greene, H.G., and Endris, C.A. (2014). Habitat: Offshore of Bolinas, California, 2013. California State Waters Map Series Data Catalog: U.S. Geological Survey Data Series 781. Available at: http://purl.stanford.edu/cw697zp4600. Data used for the creation of the potential marine benthic habitat interpretation consists of multibeam bathymetry, acoustic backscatter, sediment samples, camera-sled imagery, and existing geologic and seafloor interpretive maps. All data were compiled and displayed for interpretation using ESRI ArcGIS software, ArcMap v.10.0. The process consists of editing a shapefile within ArcMap, beginning with the construction of polygons to delineate benthic features. A benthic feature is an area with common characteristics which can be characterized as a single potential habitat type. The boundaries and extents of these features were determined from the bathymetric data. In general, interpretations were made at scales between 1:2,000 and 1:5,000. The USGS kindly provided the Center for Habitat Studies with a geodatabase consisting of feature datasets delineating geologic features and attributes for offshore Bolinas. Some of the delineated polygons were preserved as part of the potential marine benthic habitat characterization. However, the Greene and others (2007) code was used in attributing the dataset and additional polygons were added using the methods outlined below. High-resolution multibeam sonar data in the form of bathymetric depth grids (seafloor digital elevation models, referred to as the "bathymetry") were the primary data used in the interpretation of potential habitat types. Shaded-relief imagery ("hillshade") allows for visualization of the terrain and interpretation of submarine landforms. On the basis of these hillshades, areas of rock were identified by their often sharply defined edges and high relative relief; these may be contiguous outcrops, isolated parts of outcrop protruding through sediment cover (pinnacles), or isolated boulders. Although these types of features can be confidently characterized as exposed rock, it is not uncommon to find areas within or around the rocky feature that appear to be covered by a thin veneer of sediment. These areas are identified as "mixed" induration, containing both rock and sediment. Broad areas of the seafloor lacking sharp and angular characteristics are considered to be sediment. Sedimentary features may contain erosional or depositional characteristics recognizable in the bathymetry, such as dynamic bedforms (dunes or sand waves). General morphologic features such as scours, mounds, and depressions were also identified using the hillshade imagery. The combination of acoustic backscatter data and "ground truthed" sediment samples were used to delineate seafloor sediment types within areas identified as "soft (s)" induration. Initially, ground truth data, in the form of grab sample descriptions and average grain size measurements, were categorized into four grain-size categories: mud (m), muddy sand (s/m), sand (s), and sandy gravel (s/g). Backscatter data was then classified into four intensity categories (low, med, high, very high) that are assumed to correspond to relative grain sizes. The aim was to develop an intensity classification of the seafloor that correlated with the data collected from the sediment samples. Thus, the combination of remotely observed data (acoustic backscatter) and directly observed data (sediment grab samples) translates to higher confidence in our ability to interpret broad areas of the seafloor. Nonetheless, we caution against using our sediment type interpretations as anything more than "best-guess" because of the following issues: characterization of contiguous sediment bodies is a difficult procedure because even small areas can exhibit a wide spectrum of backscatter-intensity values that lack distinct boundaries; backscatter intensity can be affected by depth, vegetation, water column conditions, and seafloor relief; and directly observed sediment data, in the form of sediment samples, represents a very small area relative to remotely observed data, requiring broad areas of interpolation. Please refer to Greene and others (2007) for more information regarding the Benthic Marine Potential Habitat Classification Scheme and the codes used to represent various seafloor features. References Cited: Greene, H.G., Bizzarro, J.J., O'Connell, V.M., and Brylinsky, C.K., 2007, Construction of digital potential marine benthic habitat maps using a coded classification scheme and its application, in Todd, B.J., and Greene, H.G., eds., Mapping the seafloor for habitat characterization: Geological Association of Canada Special Paper 47, p. 141-155. Greene, H.G., Yoklavich, M.M., Starr, R.M., O'Connell, V.M., Wakefield, W.W., Sullivan, D.E., McRea, J.E., Jr., and Cailliet, G.M., 1999, A classification scheme for deep seafloor habitats: Oceanologica Acta, v. 22, no. 6, p. 663-678. This layer is presented in the WGS84 coordinate system for web display purposes. Downloadable data are provided in native coordinate system or projection.
-
Title: Habitat: Offshore of Fort Ross, California, 2014
- Polygon data
- 2014
- Not owned by MIT (Owned by Stanford)
- Endris, Charles A.
- Dieter, Bryan E.
- Greene, H. G.
- Golden, Nadine E.
- Moss Landing Marine Laboratories
Summary: This polygon shapefile represents potential benthic habitats in the offshore area of Fort Ross, California. Using multibeam echosounder (MBES) bathymetry and backscatter data, potential marine benthic habitat maps were constructed. The habitats were based on substrate types and documented or "ground truthed" using underwater video images and seafloor samples obtained by the USGS. These maps display various habitat types that range from flat, soft, unconsolidated sediment-covered seafloor to hard, deformed (folded), or highly rugose and differentially eroded bedrock exposures. Rugged, high-relief, rocky outcrops that have been eroded to form ledges and small caves are ideal habitat for rockfish (Sebastes spp.) and other bottom fish such as lingcod (Ophiodon elongatus). This layer is part of USGS Data Series 781. In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP) to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats and geology within the 3-nautical-mile limit of California's State Waters. CSMP has divided coastal California into 110 map blocks, each to be published individually as United States Geological Survey Open-File Reports (OFRs) or Scientific Investigations Maps (SIMs) at a scale of 1:24,000. Maps display seafloor morphology and character, identify potential marine benthic habitats and illustrate both the seafloor geology and shallow (to about 100 m) subsurface geology. Data layers for bathymetry, bathymetric contours, acoustic backscatter, seafloor character, potential benthic habitat and offshore geology were created for each map block, as well as regional-scale data layers for sediment thickness, depth to transition, transgressive contours, isopachs, predicted distributions of benthic macro-invertebrates and visual observations of benthic habitat from video cruises over the entire state. These data are intended for science researchers, students, policy makers, and the general public. This information is not intended for navigational purposes.The data can be used with geographic information systems (GIS) software to display geologic and oceanographic information. Additionally, this coverage can provide a geologic map for the public and geoscience community to aid in assessments and mitigation of geologic hazards in the coastal region and sufficient geologic information for land-use and land-management decisions both onshore and offshore. This information is not intended for navigational purposes. Dieter, B.E., Greene, H.G., and Endris, C.A. (2014). Habitat: Offshore of Fort Ross, California, 2014. California State Waters Map Series Data Catalog: U.S. Geological Survey Data Series 781. Available at: http://purl.stanford.edu/nw711pj0219. Data used for the creation of the potential marine benthic habitat interpretation consists of multibeam bathymetry, acoustic backscatter, sediment samples, camera-sled imagery, and existing geologic and seafloor interpretive maps. All data were compiled and displayed for interpretation using ESRI ArcGIS software, ArcMap v.10.0. The process consists of editing a shapefile within ArcMap, beginning with the construction of polygons to delineate benthic features. A benthic feature is an area with common characteristics which can be characterized as a single potential habitat type. The boundaries and extents of these features were determined from the bathymetric data. In general, interpretations were made at scales between 1:2,000 and 1:5,000. The USGS kindly provided the Center for Habitat Studies with a geodatabase consisting of feature datasets delineating geologic features and attributes for offshore Fort Ross. Some of the delineated polygons were preserved as part of the potential marine benthic habitat characterization. However, the Greene and others (2007) code was used in attributing the dataset and additional polygons were added using the methods outlined below. High-resolution multibeam sonar data in the form of bathymetric depth grids (seafloor digital elevation models, referred to as the "bathymetry") were the primary data used in the interpretation of potential habitat types. Shaded-relief imagery ("hillshade") allows for visualization of the terrain and interpretation of submarine landforms. On the basis of these hillshades, areas of rock were identified by their often sharply defined edges and high relative relief; these may be contiguous outcrops, isolated parts of outcrop protruding through sediment cover (pinnacles), or isolated boulders. Although these types of features can be confidently characterized as exposed rock, it is not uncommon to find areas within or around the rocky feature that appear to be covered by a thin veneer of sediment. These areas are identified as "mixed" induration, containing both rock and sediment. Broad areas of the seafloor lacking sharp and angular characteristics are considered to be sediment. Sedimentary features may contain erosional or depositional characteristics recognizable in the bathymetry, such as dynamic bedforms (dunes or sand waves). General morphologic features such as scours, mounds, and depressions were also identified using the hillshade imagery. The combination of acoustic backscatter data and "ground truthed" sediment samples were used to delineate seafloor sediment types within areas identified as "soft (s)" induration. Initially, ground truth data, in the form of grab sample descriptions and average grain size measurements, were categorized into four grain-size categories: mud (m), muddy sand (s/m), sand (s), and sandy gravel (s/g). Backscatter data was then classified into four intensity categories (low, med, high, very high) that are assumed to correspond to relative grain sizes. The aim was to develop an intensity classification of the seafloor that correlated with the data collected from the sediment samples. Thus, the combination of remotely observed data (acoustic backscatter) and directly observed data (sediment grab samples) translates to higher confidence in our ability to interpret broad areas of the seafloor. Nonetheless, we caution against using our sediment type interpretations as anything more than "best-guess" because of the following issues: characterization of contiguous sediment bodies is a difficult procedure because even small areas can exhibit a wide spectrum of backscatter-intensity values that lack distinct boundaries; backscatter intensity can be affected by depth, vegetation, water column conditions, and seafloor relief; and directly observed sediment data, in the form of sediment samples, represents a very small area relative to remotely observed data, requiring broad areas of interpolation. Please refer to Greene and others (2007) for more information regarding the Benthic Marine Potential Habitat Classification Scheme and the codes used to represent various seafloor features. References Cited: Greene, H.G., Bizzarro, J.J., O'Connell, V.M., and Brylinsky, C.K., 2007, Construction of digital potential marine benthic habitat maps using a coded classification scheme and its application, in Todd, B.J., and Greene, H.G., eds., Mapping the seafloor for habitat characterization: Geological Association of Canada Special Paper 47, p. 141-155. Greene, H.G., Yoklavich, M.M., Starr, R.M., O'Connell, V.M., Wakefield, W.W., Sullivan, D.E., McRea, J.E., Jr., and Cailliet, G.M., 1999, A classification scheme for deep seafloor habitats: Oceanologica Acta, v. 22, no. 6, p. 663-678. This layer is presented in the WGS84 coordinate system for web display purposes. Downloadable data are provided in native coordinate system or projection.
-
Title: Habitat: Offshore of Pacifica, California, 2013
- Polygon data
- 2014
- Not owned by MIT (Owned by Stanford)
- Greene, H. G.
- Endris, Charles A.
- Dieter, Bryan E.
- Golden, Nadine E.
- Moss Landing Marine Laboratories
Summary: This polygon shapefile depicts potential benthic habitats within the offshore region of Pacifica, California. Using multibeam echosounder (MBES) bathymetry and backscatter data, potential marine benthic habitat maps were constructed. The habitats were based on substrate types and documented or "ground truthed" using underwater video images and seafloor samples obtained by the USGS. These maps display various habitat types that range from flat, soft, unconsolidated sediment-covered seafloor to hard, deformed (folded), or highly rugose and differentially eroded bedrock exposures. Rugged, high-relief, rocky outcrops that have been eroded to form ledges and small caves are ideal habitat for rockfish (Sebastes spp.) and other bottom fish such as lingcod (Ophiodon elongatus). This layer is part of USGS Data Series 781. A map which shows these data is published in Scientific Investigations Map 3302, "California State Waters Map Series--Offshore of Coal Oil Point, California." In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP) to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats and geology within the 3-nautical-mile limit of California's State Waters. CSMP has divided coastal California into 110 map blocks, each to be published individually as United States Geological Survey Open-File Reports (OFRs) or Scientific Investigations Maps (SIMs) at a scale of 1:24,000. Maps display seafloor morphology and character, identify potential marine benthic habitats and illustrate both the seafloor geology and shallow (to about 100 m) subsurface geology. Data layers for bathymetry, bathymetric contours, acoustic backscatter, seafloor character, potential benthic habitat and offshore geology were created for each map block, as well as regional-scale data layers for sediment thickness, depth to transition, transgressive contours, isopachs, predicted distributions of benthic macro-invertebrates and visual observations of benthic habitat from video cruises over the entire state. These data are intended for science researchers, students, policy makers, and the general public. This information is not intended for navigational purposes.The data can be used with geographic information systems (GIS) software to display geologic and oceanographic information. Additionally, this coverage can provide a geologic map for the public and geoscience community to aid in assessments and mitigation of geologic hazards in the coastal region and sufficient geologic information for land-use and land-management decisions both onshore and offshore. This information is not intended for navigational purposes. Golden, N.E., Edwards, B.D., Cochrane, G.R., Phillips, E.L., Erdey, M.D., and Krigsman, L.M. (2014). Habitat: Offshore of Pacifica, California, 2013. California State Waters Map Series Data Catalog: U.S. Geological Survey Data Series 781. Available at: http://purl.stanford.edu/rd307fg6881. Data used for the creation of the potential marine benthic habitat interpretation consists of multibeam bathymetry, acoustic backscatter, sediment samples, camera-sled imagery, and existing geologic and seafloor interpretive maps. All data were compiled and displayed for interpretation using ESRI ArcGIS software, ArcMap v.10.0. The process consists of editing a shapefile within ArcMap, beginning with the construction of polygons to delineate benthic features. A benthic feature is an area with common characteristics which can be characterized as a single potential habitat type. The boundaries and extents of these features were determined from the bathymetric data. In general, interpretations were made at scales between 1:2,000 and 1:5,000. The USGS kindly provided the Center for Habitat Studies with a geodatabase consisting of feature datasets delineating geologic features and attributes for offshore Pacifica. Some of the delineated polygons were preserved as part of the potential marine benthic habitat characterization. However, the Greene and others (2007) code was used in attributing the dataset and additional polygons were added using the methods outlined below. High-resolution multibeam sonar data in the form of bathymetric depth grids (seafloor digital elevation models, referred to as the "bathymetry") were the primary data used in the interpretation of potential habitat types. Shaded-relief imagery ("hillshade") allows for visualization of the terrain and interpretation of submarine landforms. On the basis of these hillshades, areas of rock were identified by their often sharply defined edges and high relative relief; these may be contiguous outcrops, isolated parts of outcrop protruding through sediment cover (pinnacles), or isolated boulders. Although these types of features can be confidently characterized as exposed rock, it is not uncommon to find areas within or around the rocky feature that appear to be covered by a thin veneer of sediment. These areas are identified as "mixed" induration, containing both rock and sediment. Broad areas of the seafloor lacking sharp and angular characteristics are considered to be sediment. Sedimentary features may contain erosional or depositional characteristics recognizable in the bathymetry, such as dynamic bedforms (dunes or sand waves). General morphologic features such as scours, mounds, and depressions were also identified using the hillshade imagery. The combination of acoustic backscatter data and "ground truthed" sediment samples were used to delineate seafloor sediment types within areas identified as "soft (s)" induration. Initially, ground truth data, in the form of grab sample descriptions and average grain size measurements, were categorized into four grain-size categories: mud (m), muddy sand (s/m), sand (s), and sandy gravel (s/g). Backscatter data was then classified into four intensity categories (low, med, high, very high) that are assumed to correspond to relative grain sizes. The aim was to develop an intensity classification of the seafloor that correlated with the data collected from the sediment samples. Thus, the combination of remotely observed data (acoustic backscatter) and directly observed data (sediment grab samples) translates to higher confidence in our ability to interpret broad areas of the seafloor. Nonetheless, we caution against using our sediment type interpretations as anything more than "best-guess" because of the following issues: characterization of contiguous sediment bodies is a difficult procedure because even small areas can exhibit a wide spectrum of backscatter-intensity values that lack distinct boundaries; backscatter intensity can be affected by depth, vegetation, water column conditions, and seafloor relief; and directly observed sediment data, in the form of sediment samples, represents a very small area relative to remotely observed data, requiring broad areas of interpolation. Please refer to Greene and others (2007) for more information regarding the Benthic Marine Potential Habitat Classification Scheme and the codes used to represent various seafloor features. References Cited: Greene, H.G., Bizzarro, J.J., O'Connell, V.M., and Brylinsky, C.K., 2007, Construction of digital potential marine benthic habitat maps using a coded classification scheme and its application, in Todd, B.J., and Greene, H.G., eds., Mapping the seafloor for habitat characterization: Geological Association of Canada Special Paper 47, p. 141-155. Greene, H.G., Yoklavich, M.M., Starr, R.M., O'Connell, V.M., Wakefield, W.W., Sullivan, D.E., McRea, J.E., Jr., and Cailliet, G.M., 1999, A classification scheme for deep seafloor habitats: Oceanologica Acta, v. 22, no. 6, p. 663-678. This layer is presented in the WGS84 coordinate system for web display purposes. Downloadable data are provided in native coordinate system or projection.
-
Title: Faults: Offshore of Bolinas, California, 2009
- Line data
- 2014
- Not owned by MIT (Owned by Stanford)
- Endris, Charles A.
- Watt, Janet T.
- Manson, Michael W.
- Johnson, Samuel Y.
- Greene, H. G.
- Hartwell, Stephen R.
- Golden, Nadine E.
- Pacific Coastal and Marine Science Center
Summary: This line shapefile contains fault lines for the offshore area of Bolinas, California. The map area straddles the right-lateral transform boundary between the North American and Pacific plates and is cut by several active faults that cumulatively form a distributed shear zone, including the San Andreas Fault, the eastern strand of the San Gregorio Fault, the Golden Gate Fault, and the Potato Patch Fault (Bruns and others, 2002; Ryan and others, 2008). These faults are covered by sediment (mostly unit Qms) with no seafloor expression, and are mapped using seismic-reflection data (see field activities S-8-09-NC and L-1-06-SF). The San Andreas Fault is the primary plate-boundary structure and extends northwest through the southern part of the map area before passing onshore at Bolinas Lagoon. This section of the San Andreas Fault has an estimated slip rate of 17 to 24 mm/yr (U.S. Geological Survey, 2010), and the devastating Great 1906 California earthquake (M 7.8) is thought to have nucleated on the San Andreas a few kilometers south of this map area offshore of San Francisco (e.g., Bolt, 1968; Lomax, 2005). The San Andreas Fault forms the boundary between two distinct basement terranes, Upper Jurassic and Lower Cretaceous melange and graywacke sandstone of the Franciscan Complex to the east, and Late Cretaceous granitic and older metamorphic rocks of the Salinian block to the west. Franciscan Complex rocks (unit KJf, undivided) form seafloor outcrops adjacent to the shoreline southeast of Stinson Beach that are commonly continuous with onshore coastal outcrops. Faults were primarily mapped by interpretation of seismic reflection profile data (see field activities S-8-09-NC and L-1-06-SF). The seismic reflection profiles were collected between 2006 and 2009. In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP) to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats and geology within the 3-nautical-mile limit of California's State Waters. CSMP has divided coastal California into 110 map blocks, each to be published individually as United States Geological Survey Open-File Reports (OFRs) or Scientific Investigations Maps (SIMs) at a scale of 1:24,000. Maps display seafloor morphology and character, identify potential marine benthic habitats and illustrate both the seafloor geology and shallow (to about 100 m) subsurface geology. Data layers for bathymetry, bathymetric contours, acoustic backscatter, seafloor character, potential benthic habitat and offshore geology were created for each map block, as well as regional-scale data layers for sediment thickness, depth to transition, transgressive contours, isopachs, predicted distributions of benthic macro-invertebrates and visual observations of benthic habitat from video cruises over the entire state. These data are intended for science researchers, students, policy makers, and the general public. This information is not intended for navigational purposes.The data can be used with geographic information systems (GIS) software to display geologic and oceanographic information. Additionally, this coverage can provide a geologic map for the public and geoscience community to aid in assessments and mitigation of geologic hazards in the coastal region and sufficient geologic information for land-use and land-management decisions both onshore and offshore. This information is not intended for navigational purposes. Johnson, S.Y., Greene, H.G., Manson, M.W., Hartwell, S.R., Endris, C.A., and Watt, J.T. (2014). Faults: Offshore of Bolinas, California, 2009. California State Waters Map Series Data Catalog: U.S. Geological Survey Data Series 781. Available at: http://purl.stanford.edu/hv220sb1684. Map political location: Marin County, California Compilation scale: 1:24,000 Base maps used are hillshades generated from IfSAR, LiDAR, and multibeam mapping both onshore and offshore (see Bathymetry Hillshade--Offshore Bolinas, California, DS 781, for more information). References Cited Bolt, B.A., 1968, The focus of the 1906 California earthquake: Bulletin of the Seismological Society of America, v. 58, p. 457-471. Bruns, T.R., Cooper, A.K., Carlson, P.R., and McCulloch, D.S., 2002, Structure of the submerged San Andreas and San Gregorio fault zones in the Gulf of Farallones as inferred from high-resolution seismic-reflection data, in Parsons, T. (ed.), Crustal structure of the coastal and marine San Francisco Bay region, California: U.S. Geological Survey Professional Paper 1658, p. 77-117. Lomax, A., 2005, A reanalysis of the hypocentral location and related observations for the Great 1906 California earthquake: Bulletin of the Seismological Society of America, v. 95, p. 861-877. Ryan, H.F., Parsons, T., and Sliter, R.W., 2008. Vertical tectonic deformation associated with the San Andreas fault zone offshore of San Francisco, California. Tectonphysics, 429 (1-2), p. 209-224. U.S. Geological Survey and California Geological Survey, 2010, Quaternary fault and fold database for the United States, accessed April 5, 2012, from USGS website: http://earthquake.usgs.gov/hazards/qfaults/. This layer is presented in the WGS84 coordinate system for web display purposes. Downloadable data are provided in native coordinate system or projection.
-
Title: Habitat: Drakes Bay and Vicinity, California, 2009
- Polygon data
- 2014
- Not owned by MIT (Owned by Stanford)
- Endris, Charles A.
- Dieter, Bryan E.
- Greene, H. G.
- Golden, Nadine E.
- Moss Landing Marine Laboratories
Summary: This polygon shapefile represents potential benthic habitats within Drakes Bay and the surrounding vicinity of California. Using multibeam echosounder (MBES) bathymetry and backscatter data, potential marine benthic habitat maps were constructed. The habitats were based on substrate types and documented or "ground truthed" using underwater video images and seafloor samples obtained by the USGS. These maps display various habitat types that range from flat, soft, unconsolidated sediment-covered seafloor to hard, deformed (folded), or highly rugose and differentially eroded bedrock exposures. Rugged, high-relief, rocky outcrops that have been eroded to form ledges and small caves are ideal habitat for rockfish (Sebastes spp.) and other bottom fish such as lingcod (Ophiodon elongatus). Habitat map is presented in a map format generated in a GIS (ArcMap), and both digital and hard-copy versions will be produced. Please refer to Greene and others (2007) for more information regarding the Benthic Marine Potential Habitat Classification Scheme and the codes used to represent various seafloor features. This layer is part of USGS Data Series 781. In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP) to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats and geology within the 3-nautical-mile limit of California's State Waters. CSMP has divided coastal California into 110 map blocks, each to be published individually as United States Geological Survey Open-File Reports (OFRs) or Scientific Investigations Maps (SIMs) at a scale of 1:24,000. Maps display seafloor morphology and character, identify potential marine benthic habitats and illustrate both the seafloor geology and shallow (to about 100 m) subsurface geology. Data layers for bathymetry, bathymetric contours, acoustic backscatter, seafloor character, potential benthic habitat and offshore geology were created for each map block, as well as regional-scale data layers for sediment thickness, depth to transition, transgressive contours, isopachs, predicted distributions of benthic macro-invertebrates and visual observations of benthic habitat from video cruises over the entire state. These data are intended for science researchers, students, policy makers, and the general public. This information is not intended for navigational purposes.The data can be used with geographic information systems (GIS) software to display geologic and oceanographic information. Additionally, this coverage can provide a geologic map for the public and geoscience community to aid in assessments and mitigation of geologic hazards in the coastal region and sufficient geologic information for land-use and land-management decisions both onshore and offshore. This information is not intended for navigational purposes. Dieter, B.E., Greene, H.G., and Endris, C.A. (2014). Habitat: Drakes Bay and Vicinity, California, 2009. California State Waters Map Series Data Catalog: U.S. Geological Survey Data Series 781. Available at: http://purl.stanford.edu/xx622jp7604. Interpretation and polygon delineation of habitats performed at scales from 1:2000 to 1:5000. . References Cited: Greene, H.G., Bizzarro, J.J., O'Connell, V.M., and Brylinsky, C.K., 2007, Construction of digital potential marine benthic habitat maps using a coded classification scheme and its application, in Todd, B.J., and Greene, H.G., eds., Mapping the seafloor for habitat characterization: Geological Association of Canada Special Paper 47, p. 141-155. This layer is presented in the WGS84 coordinate system for web display purposes. Downloadable data are provided in native coordinate system or projection.
-
Title: Geology: Offshore of Bolinas, California, 2009
- Polygon data
- 2014
- Not owned by MIT (Owned by Stanford)
- Endris, Charles A.
- Watt, Janet T.
- Manson, Michael W.
- Johnson, Samuel Y.
- Greene, H. G.
- Hartwell, Stephen R.
- Golden, Nadine E.
- Pacific Coastal and Marine Science Center
Summary: This polygon shapefile represents geologic features within the offshore area of Bolinas, California. The continental shelf within California's State waters in the Bolinas area is relatively flat (less than 0.3 degrees) and shallow (less than 30 m) in the entire area, however the seafloor of the "Marin shelf" east of the San Andreas Fault (see below) is smooth and covered with sediment, whereas the seafloor of the "Bolinas shelf" west of this fault has extensive bedrock outcrop from the nearshore to depths of about 25 m and much less sediment cover. The morphology and geology of this shelf result from the interplay between local tectonics, sea-level rise, sedimentary processes, and oceanography. Tectonic influences are related to local faulting, folding, uplift, and subsidence (see below). Sea level has risen about 125 to 130 m over about the last 21,000 years (for example, Lambeck and Chappel, 2001; Gornitz, 2009), leading to progressive eastward migration (a few tens of km) of the shoreline and wave-cut platform, and associated transgressive erosion and deposition (for example, Catuneanu, 2006). The Offshore of Bolinas map area is now subjected to full, and sometimes severe, Pacific Ocean wave energy and strong currents. Given their relatively shallow depths and exposure to high wave energy, modern shelf sediments are mostly sand (unit Qms). More coarse-grained sands and gravels (units Qmsc and Qmss) are primarily recognized on the basis of bathymetry and high backscatter (see Bathymetry--Offshore Bolinas, California and Backscattter A to E--Offshore Bolinas, California, DS 781, for more information). Unit Qmsc occurs in two areas, on the east flank of Bolinas shelf bedrock exposures, and as three mounds south of Bolinas near the outer boundary of Californiaâs State Waters at water depths of about 25 m. The largest of these mounds is about 450 m long and 70 m wide, and has 80 cm of positive relief above the seafloor. Unit Qmss is much more extensive and forms erosional lags in rippled scour depressions (for example, Cacchione and others, 1984) that are typically a few tens of centimeters deep and bounded by mobile sand sheets. The depressions occur in four distinct locations. (1) The first location lies adjacent to bedrock outcrops within 2 km of the shoreline south of Double Point (along the western edge of the map area) at water depths of 10 to 25 m. (2) The second unit Qmss location is about 2 to 6 km south of Bolinas Lagoon at similar water depths, along the eastern flank of the Bolinas shelf. (3) The third, more restricted location, occurs about 3 km southeast of Rocky Point at water depths of about 10 to 12 m along the eastern edge of the map area, adjacent to and offshore of small bedrock uplifts. (4) The fourth location, 2 km south of Stinson Beach, is notably different. The polygon on the map encloses a field that includes more than one hundred, much smaller (length less than 20 m) oval depressions and intervening sand flats, perhaps an originally much larger field that has been almost completely filled in by sediment. Similar unit Qmss rippled-scour depressions are common along this stretch of the California coast where offshore sandy sediment can be relatively thin (thus unable to fill the depressions) due to both lack of river input and to significant erosion and transport of sediment during large northwest winter swells. Although the general areas in which both unit Qmss scour depressions and surrounding mobile sand sheets occur are not likely to change substantially, the boundaries of the unit(s) are likely ephemeral, changing seasonally and during significant storm events. Areas where shelf sediments form thin (less than 2.5 m) veneers over low-relief Neogene bedrock (see below) occur in the western half of the map and are mapped as units Qms/Tsc (Santa Cruz Mudstone) and Qms/Tp? (Purisima Formation, queried). These hybrid units are recognized and delineated based on the combination of flat relief, continuity with moderate to high relief onshore or offshore bedrock outcrops, high-resolution seismic-reflection data (see field activities S-8-09-NC and L-1-06-SF), and in some cases moderate to high backscatter. The thin sediment layer is regarded as ephemeral and dynamic, and may or may not be present at a specific location based on storms, seasonal/annual patterns of sediment movement, or longer-term climate cycles. In a nearby, similarly high-energy setting, Storlazzi and others (2011) have described seasonal burial and exhumation of submerged bedrock in northern Monterey Bay. The southeastern corner of the map area includes a portion of the outer flank of the horseshoe-shaped "San Francisco Bar" (unit Qmsb), which has formed at the mouth of the San Francisco ebb-tidal delta (Barnard and others, 2007; Dallas and Barnard, 2011). This delta-mouth bar is shaped by both tidal currents and waves, resulting in a variably hummocky, mottled, and rilled seafloor, and this surface texture is used as a primary criteria for mapping the unit and defining its contacts. Map unit polygons were digitized over underlying 2-meter base layers developed from multibeam bathymetry and backscatter data (see Bathymetry--Offshore Bolinas, California and Backscattter A to E--Offshore Bolinas, California, DS 781, for more information). The bathymetry and backscatter data were collected between 2006 and 2010. This layer is part of USGS Data Series 781. In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP) to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats and geology within the 3-nautical-mile limit of California's State Waters. CSMP has divided coastal California into 110 map blocks, each to be published individually as United States Geological Survey Open-File Reports (OFRs) or Scientific Investigations Maps (SIMs) at a scale of 1:24,000. Maps display seafloor morphology and character, identify potential marine benthic habitats and illustrate both the seafloor geology and shallow (to about 100 m) subsurface geology. Data layers for bathymetry, bathymetric contours, acoustic backscatter, seafloor character, potential benthic habitat and offshore geology were created for each map block, as well as regional-scale data layers for sediment thickness, depth to transition, transgressive contours, isopachs, predicted distributions of benthic macro-invertebrates and visual observations of benthic habitat from video cruises over the entire state. These data are intended for science researchers, students, policy makers, and the general public. This information is not intended for navigational purposes.The data can be used with geographic information systems (GIS) software to display geologic and oceanographic information. Additionally, this coverage can provide a geologic map for the public and geoscience community to aid in assessments and mitigation of geologic hazards in the coastal region and sufficient geologic information for land-use and land-management decisions both onshore and offshore. This information is not intended for navigational purposes. Johnson, S.Y., Greene, H.G., Manson, M.W., Hartwell, S.R., Endris, C.A., and Watt, J.T. (2014). Geology: Offshore of Bolinas, California, 2009. California State Waters Map Series Data Catalog: U.S. Geological Survey Data Series 781. Available at: http://purl.stanford.edu/zp799xw8630. Map political location: Marin County, California Compilation scale: 1:24,000 Base maps used are hillshades generated from IfSAR, LiDAR, and multibeam mapping both onshore and offshore (see Bathymetry Hillshade--Offshore Bolinas, California, California, DS 781, for more information). References Cited Barnard, P.L., Eshelman, J., Erikson, L., and Hanes, D.M., 2007, Coastal processes study at Ocean Beach, San Francisco, CA: Summary of data collection 2004-2006: U.S. Geological Survey Open-File Report 2007-1217, 165 p. Cacchione, D.A., Drake, D.E., Grant, W.D., and Tate, G.B., 1984. Rippled scour depressions of the inner continental shelf off central California: Journal of Sedimentary Petrology, v 54, p. 1280-1291. Catuneanu, O., 2006, Principles of Sequence Stratigraphy: Amsterdam, Elsevier, 375 p. Dallas, K.L., and Barnard, P.L., 2011, Anthropogenic influences on shoreline and nearshore evolution in the San Francisco coastal system: Estuarine Coastal and Shelf Science, v. 92, p. 195-204. Gornitz, V., 2009, Sea level change, post-glacial, in Gornitz, V., ed., Encyclopedia of Paleoclimatology and Ancient Environments: Encyclopedia of Earth Sciences Series. Springer, pp. 887-893. Lambeck, K., and Chappell, J., 2001, Sea level change through the last glacial cycle: Science, v. 292, p. 679-686. Storlazzi, C.D., Fregoso, T.A., Golden, N.E., and Finlayson, D.P., 2011, Sediment dynamics and the burial and exhumation of bedrock reefs along on emergent coastline as elucidated by repretitive sonar surveys, northern Monterey Bay, CA: Marine Geology, v. 289, p. 46-59.</SPAN></P></DIV></DIV></DIV> This layer is presented in the WGS84 coordinate system for web display purposes. Downloadable data are provided in native coordinate system or projection.
-
Title: Habitat: Offshore of Bodega Head, California, 2014
- Polygon data
- 2014
- Not owned by MIT (Owned by Stanford)
- Endris, Charles A.
- Dieter, Bryan E.
- Greene, H. G.
- Golden, Nadine E.
- Moss Landing Marine Laboratories
Summary: This polygon shapefile represents potential benthic habitats for the offshore area of Bodega Head in California. Using multibeam echosounder (MBES) bathymetry and backscatter data, potential marine benthic habitat maps were constructed. The habitats were based on substrate types and documented or "ground truthed" using underwater video images and seafloor samples obtained by the USGS. These maps display various habitat types that range from flat, soft, unconsolidated sediment-covered seafloor to hard, deformed (folded), or highly rugose and differentially eroded bedrock exposures. Rugged, high-relief, rocky outcrops that have been eroded to form ledges and small caves are ideal habitat for rockfish (Sebastes spp.) and other bottom fish such as lingcod (Ophiodon elongatus). This layer is part of USGS Data Series 781. In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP) to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats and geology within the 3-nautical-mile limit of California's State Waters. CSMP has divided coastal California into 110 map blocks, each to be published individually as United States Geological Survey Open-File Reports (OFRs) or Scientific Investigations Maps (SIMs) at a scale of 1:24,000. Maps display seafloor morphology and character, identify potential marine benthic habitats and illustrate both the seafloor geology and shallow (to about 100 m) subsurface geology. Data layers for bathymetry, bathymetric contours, acoustic backscatter, seafloor character, potential benthic habitat and offshore geology were created for each map block, as well as regional-scale data layers for sediment thickness, depth to transition, transgressive contours, isopachs, predicted distributions of benthic macro-invertebrates and visual observations of benthic habitat from video cruises over the entire state. This coverage can be used to aid in assessments and mitigation of geologic hazards in the coastal region and to provide sufficient geologic information for land-use and land-management decisions both onshore and offshore. These data are intended for science researchers, students, policy makers, and the general public. The data can be used with geographic information systems (GIS) software to display geologic and oceanographic information. Additionally, this coverage can provide a geologic map for the public and geoscience community to aid in assessments and mitigation of geologic hazards in the coastal region and sufficient geologic information for land-use and land-management decisions both onshore and offshore. This information is not intended for navigational purposes. Dieter, B.E., Greene, H.G., and Endris, C.A. (2014). Habitat: Offshore of Bodega Head, California, 2014. California State Waters Map Series Data Catalog: U.S. Geological Survey Data Series 781. Available at: http://purl.stanford.edu/vh721pq0822. Data used for the creation of the potential marine benthic habitat interpretation consists of multibeam bathymetry, acoustic backscatter, sediment samples, camera-sled imagery, and existing geologic and seafloor interpretive maps. All data were compiled and displayed for interpretation using ESRI ArcGIS software, ArcMap v.10.0. The process consists of editing a shapefile within ArcMap, beginning with the construction of polygons to delineate benthic features. A benthic feature is an area with common characteristics which can be characterized as a single potential habitat type. The boundaries and extents of these features were determined from the bathymetric data. In general, interpretations were made at scales between 1:2,000 and 1:5,000. The USGS kindly provided the Center for Habitat Studies with a geodatabase consisting of feature datasets delineating geologic features and attributes for offshore Bodega Head. Some of the delineated polygons were preserved as part of the potential marine benthic habitat characterization. However, the Greene and others (2007) code was used in attributing the dataset and additional polygons were added using the methods outlined below. High-resolution multibeam sonar data in the form of bathymetric depth grids (seafloor digital elevation models, referred to as the "bathymetry") were the primary data used in the interpretation of potential habitat types. Shaded-relief imagery ("hillshade") allows for visualization of the terrain and interpretation of submarine landforms. On the basis of these hillshades, areas of rock were identified by their often sharply defined edges and high relative relief; these may be contiguous outcrops, isolated parts of outcrop protruding through sediment cover (pinnacles), or isolated boulders. Although these types of features can be confidently characterized as exposed rock, it is not uncommon to find areas within or around the rocky feature that appear to be covered by a thin veneer of sediment. These areas are identified as "mixed" induration, containing both rock and sediment. Broad areas of the seafloor lacking sharp and angular characteristics are considered to be sediment. Sedimentary features may contain erosional or depositional characteristics recognizable in the bathymetry, such as dynamic bedforms (dunes or sand waves). General morphologic features such as scours, mounds, and depressions were also identified using the hillshade imagery. The combination of acoustic backscatter data and "ground truthed" sediment samples were used to delineate seafloor sediment types within areas identified as "soft (s)" induration. Initially, ground truth data, in the form of grab sample descriptions and average grain size measurements, were categorized into four grain-size categories: mud (m), muddy sand (s/m), sand (s), and sandy gravel (s/g). Backscatter data was then classified into four intensity categories (low, med, high, very high) that are assumed to correspond to relative grain sizes. The aim was to develop an intensity classification of the seafloor that correlated with the data collected from the sediment samples. Thus, the combination of remotely observed data (acoustic backscatter) and directly observed data (sediment grab samples) translates to higher confidence in our ability to interpret broad areas of the seafloor. Nonetheless, we caution against using our sediment type interpretations as anything more than "best-guess" because of the following issues: characterization of contiguous sediment bodies is a difficult procedure because even small areas can exhibit a wide spectrum of backscatter-intensity values that lack distinct boundaries; backscatter intensity can be affected by depth, vegetation, water column conditions, and seafloor relief; and directly observed sediment data, in the form of sediment samples, represents a very small area relative to remotely observed data, requiring broad areas of interpolation. Please refer to Greene and others (2007) for more information regarding the Benthic Marine Potential Habitat Classification Scheme and the codes used to represent various seafloor features. References Cited: Greene, H.G., Bizzarro, J.J., O'Connell, V.M., and Brylinsky, C.K., 2007, Construction of digital potential marine benthic habitat maps using a coded classification scheme and its application, in Todd, B.J., and Greene, H.G., eds., Mapping the seafloor for habitat characterization: Geological Association of Canada Special Paper 47, p. 141-155. Greene, H.G., Yoklavich, M.M., Starr, R.M., O'Connell, V.M., Wakefield, W.W., Sullivan, D.E., McRea, J.E., Jr., and Cailliet, G.M., 1999, A classification scheme for deep seafloor habitats: Oceanologica Acta, v. 22, no. 6, p. 663-678. This layer is presented in the WGS84 coordinate system for web display purposes. Downloadable data are provided in native coordinate system or projection.
-
Title: Folds: Offshore of San Francisco, California, 2010
- Line data
- 2014
- Not owned by MIT (Owned by Stanford)
- Greene, H. G.
- Endris, Charles A.
- Bruns, Terry R.
- Johnson, Samuel Y.
- Hartwell, Stephen R.
- Manson, Michael W.
- Golden, Nadine E.
- Pacific Coastal and Marine Science Center
- Moss Landing Marine Laboratories
Summary: This line shapefile contains depicts geologic folds within the offshore area surrounding San Francisco, California. The map area straddles the right-lateral transform boundary between the North American and Pacific plates and is cut by several active faults that cumulatively form a distributed shear zone, including the San Andreas Fault, the eastern strand of the San Gregorio Fault, the Golden Gate Fault, and the Potato Patch Fault (Bruns and others, 2002; Ryan and others, 2008). These faults are covered by Holocene sediments (mostly units Qms, Qmsb, Qmst) with no seafloor expression, and are mapped using seismic-reflection data. The San Andreas Fault is the primary plate-boundary structure and extends northwest across the map area; it intersects the shoreline 10 km north of the map area at Bolinas Lagoon, and 3 km south of the map area at Mussel Rock. This section of the San Andreas Fault has an estimated slip rate of 17 to 24 mm/yr (U.S. Geological Survey, 2010), and the devastating Great 1906 California earthquake (M 7.8) is thought to have nucleated on the San Andreas a few kilometers offshore of San Francisco within the map area (Bolt, 1968; Lomax, 2005). The San Andreas Fault forms the boundary between two distinct basement terranes, Upper Jurassic to Lower Cretaceous rocks of the Franciscan Complex to the east, and Late Cretaceous granitic and older metamorphic rocks of the Salinian block to the west. Franciscan Complex rocks (unit KJf, undivided) form seafloor outcrops at and north of Point Lobos adjacent to onland exposures. The Franciscan is divided into 13 different units for the onshore portion of this geologic map based on different lithologies and ages, but the unit cannot be similarly divided in the offshore because of a lack of direct observation and (or) sampling. Folds were primarily mapped by interpretation of seismic reflection profile data (see field activities S-15-10-NC and F-2-07-NC). The seismic reflection profiles were collected between 2007 and 2010. A map that shows these data is published in Open-File Report 2015-1068, "California State Waters Map Series--Offshore of San Francisco, California." This layer is part of USGS Data Series 781. In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP) to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats and geology within the 3-nautical-mile limit of California's State Waters. CSMP has divided coastal California into 110 map blocks, each to be published individually as United States Geological Survey Open-File Reports (OFRs) or Scientific Investigations Maps (SIMs) at a scale of 1:24,000. Maps display seafloor morphology and character, identify potential marine benthic habitats and illustrate both the seafloor geology and shallow (to about 100 m) subsurface geology. Data layers for bathymetry, bathymetric contours, acoustic backscatter, seafloor character, potential benthic habitat and offshore geology were created for each map block, as well as regional-scale data layers for sediment thickness, depth to transition, transgressive contours, isopachs, predicted distributions of benthic macro-invertebrates and visual observations of benthic habitat from video cruises over the entire state. This coverage can be used to to aid in assessments and mitigation of geologic hazards in the coastal region and to provide sufficient geologic information for land-use and land-management decisions both onshore and offshore. These data are intended for science researchers, students, policy makers, and the general public. This information is not intended for navigational purposes.The data can be used with geographic information systems (GIS) software to display geologic and oceanographic information. Greene, H.G., Johnson, S.Y., Manson, M.W., Hartwell, S.R., Endris, C.A., and Bruns, T.R. (2014). Folds: Offshore of San Francisco, California, 2010. California State Waters Map Series Data Catalog: U.S. Geological Survey Data Series 781. Available at: http://purl.stanford.edu/zb566ww6047. Map political location: San Mateo County, California Compilation scale: 1:24,000 Base maps used are hillshades generated from IfSAR, LiDAR, and multibeam mapping both onshore and offshore (see Bathymetry Hillshade--Offshore San Francisco, California, DS 781, for more information). References Cited Bolt, B.A., 1968, The focus of the 1906 California earthquake: Bulletin of the Seismological Society of America, v. 58, p. 457-471. Bruns, T.R., Cooper, A.K., Carlson, P.R., and McCulloch, D.S., 2002, Structure of the submerged San Andreas and San Gregorio fault zones in the Gulf of Farallones as inferred from high-resolution seismic-reflection data, in Parsons, T. (ed.), Crustal structure of the coastal and marine San Francisco Bay region, California: U.S. Geological Survey Professional Paper 1658, p. 77-117. Lomax, A., 2005, A reanalysis of the hypocentral location and related observations for the Great 1906 California earthquake: Bulletin of the Seismological Society of America, v. 95, p. 861-877. Ryan, H.F., Parsons, T., and Sliter, R.W., 2008. Vertical tectonic deformation associated with the San Andreas fault zone offshore of San Francisco, California. Tectonophysics, 429 (1-2), p. 209-224. U.S. Geological Survey and California Geological Survey, 2010, Quaternary fault and fold database for the United States, accessed April 5, 2012, from USGS website: http://earthquake.usgs.gov/hazards/qfaults/. This layer is presented in the WGS84 coordinate system for web display purposes. Downloadable data are provided in native coordinate system or projection.
-
Title: Habitat: Offshore of Coal Oil Point, California, 2012
- Polygon data
- 2014
- Not owned by MIT (Owned by Stanford)
Summary: This polygon shapefile contains areas of potential benthic habitats within the offshore area of Coal Oil Point, California. This layer is part of USGS Data Series 781. In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP) to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats and geology within the 3-nautical-mile limit of California's State Waters. CSMP has divided coastal California into 110 map blocks, each to be published individually as United States Geological Survey Open-File Reports (OFRs) or Scientific Investigations Maps (SIMs) at a scale of 1:24,000. Maps display seafloor morphology and character, identify potential marine benthic habitats and illustrate both the seafloor geology and shallow (to about 100 m) subsurface geology. Data layers for bathymetry, bathymetric contours, acoustic backscatter, seafloor character, potential benthic habitat and offshore geology were created for each map block, as well as regional-scale data layers for sediment thickness, depth to transition, transgressive contours, isopachs, predicted distributions of benthic macro-invertebrates and visual observations of benthic habitat from video cruises over the entire state. These data are intended for science researchers, students, policy makers, and the general public. This information is not intended for navigational purposes.The data can be used with geographic information systems (GIS) software to display geologic and oceanographic information. Additionally, this coverage can provide a geologic map for the public and geoscience community to aid in assessments and mitigation of geologic hazards in the coastal region and sufficient geologic information for land-use and land-management decisions both onshore and offshore. This information is not intended for navigational purposes. U.S. Geological Survey. (2013). Habitat: Offshore of Coal Oil Point, California, 2012. California State Waters Map Series Data Catalog: U.S. Geological Survey Data Series 781. Available at: http://purl.stanford.edu/wj400hk8358. Data used for the creation of the potential marine benthic habitat interpretation consists of multibeam bathymetry, acoustic backscatter, sediment samples, camera-sled imagery, and existing geologic and seafloor interpretive maps. All data were compiled and displayed for interpretation using ESRI ArcGIS software, ArcMap v.9.3. The process utilizes editing a shapefile within ArcMap, beginning with the construction of polygons to delineate benthic features. A feature is an area with common characteristics which can be characterized as a single potential habitat type. The boundaries and extents of these features were determined from the bathymetric data. Generally, interpretations were made at scales ranging between 1:2,000 and 1:5,000. The USGS kindly provided the Center for Habitat Studies with a geodatabase consisting of feature datasets delineating geologic features and attributes for the Santa Barbara Channel. Some of the delineated polygons were preserved as part of the potential marine benthic habitat characterization. However, the Greene et. al (2007) code was used in attributing the dataset and additional polygons were added using the methods outlined below. High resolution multibeam sonar data in the form of bathymetric depth grids (seafloor digital elevation models, referred to as the "bathymetry") were the primary data used in the interpretation of potential habitat types. Shaded relief imagery ("hillshade") allows for visualization of the terrain and interpretation of submarine landforms. Based on these hillshades, areas of rock were identified by their often sharply defined edges and high relative relief; these may be contiguous outcrops, isolated portions of outcrop protruding through sediment cover (pinnacles), or isolated boulders. Although these types of features can be confidently characterized as exposed rock, it is not uncommon to find areas within or around the rocky feature that appear to be covered by a thin veneer of sediment. These areas are identified as "mixed" induration, containing both rock and sediment. Broad areas of the seafloor lacking sharp and angular characteristics are considered to be sediment. Sedimentary features may contain erosional or depositional characteristics recognizable in the bathymetry, such as dynamic bedforms (dunes or sand waves). General morphologic features such as scours, mounds, and depressions were also identified using the hillshade relief imagery. The combination of acoustic backscatter data and "groundtruthed" sediment samples were used to delineate seafloor sediment types within areas identified as "soft (s)" induration. Initially, groundtruth data, in the form of grab sample descriptions and average grain size measurements, were categorized into four grain-size categories: mud (m), muddy sand (s/m), sand (s), and sandy gravel (s/g). Backscatter data was then classified into four intensity categories (low, med, high, very high) that are assumed to correspond to relative grain sizes. The aim was to develop an intensity classification of the seafloor that correlated with the data collected from the sediment samples. Thus, the combination of remotely observed data (acoustic backscatter) and directly observed data (sediment grab samples) translates to higher confidence in our ability to interpret broad areas of the seafloor. Nonetheless, we caution against using our sediment type interpretations as anything more than "best-guess" due to the following issues: characterization of contiguous sediment bodies is a difficult procedure since even small areas can exhibit a wide spectrum of backscatter intensity values that lack distinct boundaries; backscatter intensity can be affected by depth, vegetation, water column conditions, and seafloor relief; and directly observed sediment data, in the form of sediment samples, represents a very small area relative to remotely observed data, requiring broad areas of interpolation. Please refer to Greene et al. (2007) for more information regarding the Benthic Marine Potential Habitat Classification Scheme and the codes used to represent various seafloor features. References Cited: Greene, H.G., Yoklavich, M.M., Starr, R.M., O'Connell, V.M., Wakefield, W.W., Sullivan, D.E., McRea, J.E., Jr., and Cailliet, G.M., 1999, A classification scheme for deep seafloor habitats: Oceanologica Acta, v. 22, no. 6, p. 663-678. Greene, H.G., Bizzarro, J.J., O'Connell, V.M., and Brylinsky, C.K., 2007, Construction of digital potential marine benthic habitat maps using a coded classification scheme and its application, in Todd, B.J., and Greene, H.G., eds., Mapping the seafloor for habitat characterization: Geological Association of Canada Special Paper 47, p. 141-155. This layer is presented in the WGS84 coordinate system for web display purposes. Downloadable data are provided in native coordinate system or projection.
-
Title: Habitat: Offshore of San Francisco, California, 2013
- Polygon data
- 2014
- Not owned by MIT (Owned by Stanford)
- Dieter, Bryan E.
- Greene, H. G.
- Endris, Charles A.
- Golden, Nadine E.
- Center for Habitat Studies, Moss Landing Marine Laboratories
- Moss Landing Marine Laboratories
Summary: This polygon shapefile depicts potential benthic habitats within the offshore area of San Francisco, California. Using multibeam echosounder (MBES) bathymetry and backscatter data, potential marine benthic habitat maps were constructed. The habitats were based on substrate types and documented or "ground truthed" using underwater video images and seafloor samples obtained by the USGS. These maps display various habitat types that range from flat, soft, unconsolidated sediment-covered seafloor to hard, deformed (folded), or highly rugose and differentially eroded bedrock exposures. Rugged, high-relief, rocky outcrops that have been eroded to form ledges and small caves are ideal habitat for rockfish (Sebastes spp.) and other bottom fish such as lingcod (Ophiodon elongatus). A map that shows these data is published in Open-File Report 2015-1068, "California State Waters Map Series--Offshore of San Francisco, California." This layer is part of USGS Data Series 781. In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP) to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats and geology within the 3-nautical-mile limit of California's State Waters. CSMP has divided coastal California into 110 map blocks, each to be published individually as United States Geological Survey Open-File Reports (OFRs) or Scientific Investigations Maps (SIMs) at a scale of 1:24,000. Maps display seafloor morphology and character, identify potential marine benthic habitats and illustrate both the seafloor geology and shallow (to about 100 m) subsurface geology. Data layers for bathymetry, bathymetric contours, acoustic backscatter, seafloor character, potential benthic habitat and offshore geology were created for each map block, as well as regional-scale data layers for sediment thickness, depth to transition, transgressive contours, isopachs, predicted distributions of benthic macro-invertebrates and visual observations of benthic habitat from video cruises over the entire state. The purpose of this work is to construct nine potential marine benthic habitat maps characterized after Greene et al. (1999, 2007). These habitat maps are constructed in the same manner as the maps completed for phase I of the California Seafloor Mapping Program (CSMP). These data are intended for science researchers, students, policy makers, and the general public. This information is not intended for navigational purposes.The data can be used with geographic information systems (GIS) software to display geologic and oceanographic information. Additionally, this coverage can provide a geologic map for the public and geoscience community to aid in assessments and mitigation of geologic hazards in the coastal region and sufficient geologic information for land-use and land-management decisions both onshore and offshore. This information is not intended for navigational purposes. Endris, C.A., Greene, H.G., and Dieter, B.E. (2014). Habitat: Offshore of San Francisco, California, 2013. California State Waters Map Series Data Catalog: U.S. Geological Survey Data Series 781. Available at: http://purl.stanford.edu/bp352gx0117. Data used for the creation of the potential marine benthic habitat interpretation consists of multibeam bathymetry, acoustic backscatter, sediment samples, camera-sled imagery, and existing geologic and seafloor interpretive maps. All data were compiled and displayed for interpretation using ESRI ArcGIS software, ArcMap v.10.0. The process consists of editing a shapefile within ArcMap, beginning with the construction of polygons to delineate benthic features. A benthic feature is an area with common characteristics which can be characterized as a single potential habitat type. The boundaries and extents of these features were determined from the bathymetric data. In general, interpretations were made at scales between 1:2,000 and 1:5,000. The USGS kindly provided the Center for Habitat Studies with a geodatabase consisting of feature datasets delineating geologic features and attributes for offshore San Francisco. Some of the delineated polygons were preserved as part of the potential marine benthic habitat characterization. However, the Greene and others (2007) code was used in attributing the dataset and additional polygons were added using the methods outlined below. High-resolution multibeam sonar data in the form of bathymetric depth grids (seafloor digital elevation models, referred to as the "bathymetry") were the primary data used in the interpretation of potential habitat types. Shaded-relief imagery ("hillshade") allows for visualization of the terrain and interpretation of submarine landforms. On the basis of these hillshades, areas of rock were identified by their often sharply defined edges and high relative relief; these may be contiguous outcrops, isolated parts of outcrop protruding through sediment cover (pinnacles), or isolated boulders. Although these types of features can be confidently characterized as exposed rock, it is not uncommon to find areas within or around the rocky feature that appear to be covered by a thin veneer of sediment. These areas are identified as "mixed" induration, containing both rock and sediment. Broad areas of the seafloor lacking sharp and angular characteristics are considered to be sediment. Sedimentary features may contain erosional or depositional characteristics recognizable in the bathymetry, such as dynamic bedforms (dunes or sand waves). General morphologic features such as scours, mounds, and depressions were also identified using the hillshade imagery. The combination of acoustic backscatter data and "ground truthed" sediment samples were used to delineate seafloor sediment types within areas identified as "soft (s)" induration. Initially, ground truth data, in the form of grab sample descriptions and average grain size measurements, were categorized into four grain-size categories: mud (m), muddy sand (s/m), sand (s), and sandy gravel (s/g). Backscatter data was then classified into four intensity categories (low, med, high, very high) that are assumed to correspond to relative grain sizes. The aim was to develop an intensity classification of the seafloor that correlated with the data collected from the sediment samples. Thus, the combination of remotely observed data (acoustic backscatter) and directly observed data (sediment grab samples) translates to higher confidence in our ability to interpret broad areas of the seafloor. Nonetheless, we caution against using our sediment type interpretations as anything more than "best-guess" because of the following issues: characterization of contiguous sediment bodies is a difficult procedure because even small areas can exhibit a wide spectrum of backscatter-intensity values that lack distinct boundaries; backscatter intensity can be affected by depth, vegetation, water column conditions, and seafloor relief; and directly observed sediment data, in the form of sediment samples, represents a very small area relative to remotely observed data, requiring broad areas of interpolation. Please refer to Greene and others (2007) for more information regarding the Benthic Marine Potential Habitat Classification Scheme and the codes used to represent various seafloor features. References Cited: Greene, H.G., Bizzarro, J.J., O'Connell, V.M., and Brylinsky, C.K., 2007, Construction of digital potential marine benthic habitat maps using a coded classification scheme and its application, in Todd, B.J., and Greene, H.G., eds., Mapping the seafloor for habitat characterization: Geological Association of Canada Special Paper 47, p. 141-155. Greene, H.G., Yoklavich, M.M., Starr, R.M., O'Connell, V.M., Wakefield, W.W., Sullivan, D.E., McRea, J.E., Jr., and Cailliet, G.M., 1999, A classification scheme for deep seafloor habitats: Oceanologica Acta, v. 22, no. 6, p. 663-678. This layer is presented in the WGS84 coordinate system for web display purposes. Downloadable data are provided in native coordinate system or projection.
-
Title: Habitat: Offshore of Point Reyes, California, 2014
- Polygon data
- 2014
- Not owned by MIT (Owned by Stanford)
- Greene, H. G.
- Endris, Charles A.
- Dieter, Bryan E.
- Golden, Nadine E.
- Center for Habitat Studies, Moss Landing Marine Laboratories
- Moss Landing Marine Laboratories
Summary: Using multibeam echosounder (MBES) bathymetry and backscatter data, potential marine benthic habitat maps were constructed. The habitats were based on substrate types and documented or "ground truthed" using underwater video images and seafloor samples obtained by the USGS. These maps display various habitat types that range from flat, soft, unconsolidated sediment-covered seafloor to hard, deformed (folded), or highly rugose and differentially eroded bedrock exposures. Rugged, high-relief, rocky outcrops that have been eroded to form ledges and small caves are ideal habitat for rockfish (Sebastes spp.) and other bottom fish such as lingcod (Ophiodon elongatus). The map that show these data are published in Open-File Report 2015-1114, "California State Waters Map Series—Offshore of Point Reyes, California." This layer is part of USGS Data Series 781. In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP) to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats and geology within the 3-nautical-mile limit of California's State Waters. CSMP has divided coastal California into 110 map blocks, each to be published individually as United States Geological Survey Open-File Reports (OFRs) or Scientific Investigations Maps (SIMs) at a scale of 1:24,000. Maps display seafloor morphology and character, identify potential marine benthic habitats and illustrate both the seafloor geology and shallow (to about 100 m) subsurface geology. Data layers for bathymetry, bathymetric contours, acoustic backscatter, seafloor character, potential benthic habitat and offshore geology were created for each map block, as well as regional-scale data layers for sediment thickness, depth to transition, transgressive contours, isopachs, predicted distributions of benthic macro-invertebrates and visual observations of benthic habitat from video cruises over the entire state. These data are intended for science researchers, students, policy makers, and the general public. This information is not intended for navigational purposes.The data can be used with geographic information systems (GIS) software to display geologic and oceanographic information. Additionally, this coverage can provide a geologic map for the public and geoscience community to aid in assessments and mitigation of geologic hazards in the coastal region and sufficient geologic information for land-use and land-management decisions both onshore and offshore. This information is not intended for navigational purposes. Endris, C.A., Greene, H.G. and Dieter, B.E. (2014). Habitat: Offshore of Point Reyes, California, 2014. California State Waters Map Series Data Catalog: U.S. Geological Survey Data Series 781. Available at: http://purl.stanford.edu/nt663ss8448. Data used for the creation of the potential marine benthic habitat interpretation consists of multibeam bathymetry, acoustic backscatter, sediment samples, camera-sled imagery, and existing geologic and seafloor interpretive maps. All data were compiled and displayed for interpretation using ESRI ArcGIS software, ArcMap v.10.0. The process consists of editing a shapefile within ArcMap, beginning with the construction of polygons to delineate benthic features. A benthic feature is an area with common characteristics which can be characterized as a single potential habitat type. The boundaries and extents of these features were determined from the bathymetric data. In general, interpretations were made at scales between 1:2,000 and 1:5,000. The USGS kindly provided the Center for Habitat Studies with a geodatabase consisting of feature datasets delineating geologic features and attributes for offshore of Point Reyes. Some of the delineated polygons were preserved as part of the potential marine benthic habitat characterization. However, the Greene and others (2007) code was used in attributing the dataset and additional polygons were added using the methods outlined below. High-resolution multibeam sonar data in the form of bathymetric depth grids (seafloor digital elevation models, referred to as the "bathymetry") were the primary data used in the interpretation of potential habitat types. Shaded-relief imagery ("hillshade") allows for visualization of the terrain and interpretation of submarine landforms. On the basis of these hillshades, areas of rock were identified by their often sharply defined edges and high relative relief; these may be contiguous outcrops, isolated parts of outcrop protruding through sediment cover (pinnacles), or isolated boulders. Although these types of features can be confidently characterized as exposed rock, it is not uncommon to find areas within or around the rocky feature that appear to be covered by a thin veneer of sediment. These areas are identified as "mixed" induration, containing both rock and sediment. Broad areas of the seafloor lacking sharp and angular characteristics are considered to be sediment. Sedimentary features may contain erosional or depositional characteristics recognizable in the bathymetry, such as dynamic bedforms (dunes or sand waves). General morphologic features such as scours, mounds, and depressions were also identified using the hillshade imagery. The combination of acoustic backscatter data and "ground truthed" sediment samples were used to delineate seafloor sediment types within areas identified as "soft (s)" induration. Initially, ground truth data, in the form of grab sample descriptions and average grain size measurements, were categorized into four grain-size categories: mud (m), muddy sand (s/m), sand (s), and sandy gravel (s/g). Backscatter data was then classified into four intensity categories (low, med, high, very high) that are assumed to correspond to relative grain sizes. The aim was to develop an intensity classification of the seafloor that correlated with the data collected from the sediment samples. Thus, the combination of remotely observed data (acoustic backscatter) and directly observed data (sediment grab samples) translates to higher confidence in our ability to interpret broad areas of the seafloor. Nonetheless, we caution against using our sediment type interpretations as anything more than "best-guess" because of the following issues: characterization of contiguous sediment bodies is a difficult procedure because even small areas can exhibit a wide spectrum of backscatter-intensity values that lack distinct boundaries; backscatter intensity can be affected by depth, vegetation, water column conditions, and seafloor relief; and directly observed sediment data, in the form of sediment samples, represents a very small area relative to remotely observed data, requiring broad areas of interpolation. Please refer to Greene and others (2007) for more information regarding the Benthic Marine Potential Habitat Classification Scheme and the codes used to represent various seafloor features. References Cited: Greene, H.G., Bizzarro, J.J., O'Connell, V.M., and Brylinsky, C.K., 2007, Construction of digital potential marine benthic habitat maps using a coded classification scheme and its application, in Todd, B.J., and Greene, H.G., eds., Mapping the seafloor for habitat characterization: Geological Association of Canada Special Paper 47, p. 141-155. Greene, H.G., Yoklavich, M.M., Starr, R.M., O'Connell, V.M., Wakefield, W.W., Sullivan, D.E., McRea, J.E., Jr., and Cailliet, G.M., 1999, A classification scheme for deep seafloor habitats: Oceanologica Acta, v. 22, no. 6, p. 663-678. This layer is presented in the WGS84 coordinate system for web display purposes. Downloadable data are provided in native coordinate system or projection.
-
Title: Geology: Offshore of San Francisco, California, 2010
- Polygon data
- 2014
- Not owned by MIT (Owned by Stanford)
- Greene, H. G.
- Endris, Charles A.
- Bruns, Terry R.
- Johnson, Samuel Y.
- Hartwell, Stephen R.
- Manson, Michael W.
- Golden, Nadine E.
- Moss Landing Marine Laboratories
- Pacific Coastal and Marine Science Center
Summary: This polygon shapefile depicts geological features within the offshore area of San Francisco, California. The map area includes the Golden Gate inlet which connects the Pacific Ocean and San Francisco Bay. San Francisco Bay, the largest estuary on the U.S. west coast, is located at the mouth of the Sacramento and San Joaquin rivers and drains over 40 percent of the state of California. The large surface area of the bay and diurnal tidal range of 1.78 m creates an enormous tidal prism (about 2 billion cu m) and strong tidal currents, commonly exceeding 2.5 m/s (Barnard and others, 2006a, 2006b, 2007). Acceleration of these currents through the constricted inlet has led to scouring of a bedrock channel that has a maximum depth of 113 m. Large fields of sand waves (Barnard and others, 2007) (unit Qmsw) have formed both west and east of this channel as flow expands and tidal currents decelerate. Active tidally influenced map units inside San Francisco Bay also include sand-dominated deposits (unit Qbs) and more coarse-grained sand, gravel, and pebble deposits (unit Qbsc). Sand wave fields resulting from tidal flow are also present in the nearshore along the Pacific Coast, both north and south of the Golden Gate inlet. The sand wave fields appear to be variably mobilized by both ebb and flood tides, but the presence of a large (~150 sq km) ebb-tidal delta at the mouth of the bay west of the inlet indicates net sediment transport has been to the west. The ebb-tidal delta west of the Golden Gate inlet is mapped as two units. The inner part of the delta (unit Qmst) comprises a semi-circular, inward-sloping (i.e., toward the Golden Gate inlet), sandy seafloor at water depths of about 12 to 24 m. This inner delta has a notably smooth surface, indicating sediment transport and deposition under different flow regimes (defined by tidal current strength and depth) than those in which the sand waves formed and are maintained. Further deceleration of tidal currents beyond the inner delta has led to development of a large, shoaling (about 8 to 12 m water depth), horse-shoe shaped, delta-mouth bar (unit Qmsb). This feature (the "San Francisco Bar") surrounds the inner delta, and its central crest is cut by a dredged shipping channel that separates the nothern and southern parts of the bar, the "North Bar" and "South Bar," respectively. The San Francisco Bar is shaped by both tidal currents and waves, which regularly exceed 6 m in height on the continental shelf during major winter storms (Barnard and others, 2007). This mix of tidal and wave influence results in a variably hummocky, mottled, and rilled seafloor, and this surface texture is used as a primary criteria for mapping the unit and defining its boundaries. Outside the San Francisco Bar to the limits of the map area, the notably flat shelf (less than 0.2 degrees) and the nearshore are wave-dominated and characterized by sandy marine sediment (unit Qms). Local zones of wave-winnowed (?) coarser sediment (unit Qmsc) indicated by high backscatter occur along the coast offshore Ocean Beach. Unit Qmsc is also mapped inside and at the mouth of the Golden Gate inlet where it presumably results from winnowing by strong tidal currents. Coarser sediment also occurs as winnowed lags in rippled scour depressions (unit Qmss), recognized on the basis of high-resolution bathymetry and backscatter. These depressions are typically a few tens of centimeters deep and are bounded by mobile sand sheets (for example, Cacchione and others, 1984). This unit occurs primarily in the nearshore south of the Golden Gate inlet offshore of Ocean Beach (water depth less than 13 m) and north of the inlet offshore Muir Beach (water depth less than 17 m). Artificial seafloor (unit af) has several distinct map occurrences: (1) sites of active sand mining inside San Francisco Bay; (2) the dredged shipping channel at the central crest of the San Francisco Bar; (3) the sewage outfall pipe, associated rip rap, and surrounding scour channel offshore Ocean Beach; and (4) the location of a former waste disposal site about 2.5 km offshore Point Lobos. Although the map shows the areas in which several active sedimentary units (Qmsw, Qmst, Qmsb, Qms, Qmsc, Qmss, Qbsm, Qbsc) presently occur, it is important to note that map units and contacts are dynamic and ephemeral, likely to change during large storms, and on seasonal to decadal scales based on changing external forces such as weather, climate, sea level, and sediment supply. Dallas and Barnard (2011) have noted, for example, that the ebb-tidal delta has dramatically shrunk since 1873 when the first bathymetric survey of the area was undertaken. They document an approximate 1 km landward migration of the crest of the San Francisco Bar, which they attribute to a reduction in the tidal prism of San Francisco Bay and a decrease in coastal sediment. Map unit polygons were digitized over underlying 2-meter base layers developed from multibeam bathymetry and backscatter data. The bathymetry and backscatter data were collected between 2006 and 2010. A map that shows these data is published in Open-File Report 2015-1068, "California State Waters Map Series--Offshore of San Francisco, California." This layer is part of USGS Data Series 781. In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP) to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats and geology within the 3-nautical-mile limit of California's State Waters. CSMP has divided coastal California into 110 map blocks, each to be published individually as United States Geological Survey Open-File Reports (OFRs) or Scientific Investigations Maps (SIMs) at a scale of 1:24,000. Maps display seafloor morphology and character, identify potential marine benthic habitats and illustrate both the seafloor geology and shallow (to about 100 m) subsurface geology. Data layers for bathymetry, bathymetric contours, acoustic backscatter, seafloor character, potential benthic habitat and offshore geology were created for each map block, as well as regional-scale data layers for sediment thickness, depth to transition, transgressive contours, isopachs, predicted distributions of benthic macro-invertebrates and visual observations of benthic habitat from video cruises over the entire state. This coverage can be used to to aid in assessments and mitigation of geologic hazards in the coastal region and to provide sufficient geologic information for land-use and land-management decisions both onshore and offshore. These data are intended for science researchers, students, policy makers, and the general public. This information is not intended for navigational purposes.The data can be used with geographic information systems (GIS) software to display geologic and oceanographic information. Greene, H.G., Johnson, S.Y., Manson, M.W., Hartwell, S.R., Endris, C.A., and Bruns, T.R. (2014). Geology: Offshore of San Francisco, California, 2010. California State Waters Map Series Data Catalog: U.S. Geological Survey Data Series 781. Available at: http://purl.stanford.edu/kn414qm4080. Map political location: San Mateo County, California Compilation scale: 1:24,000 Base maps used are hillshades generated from IfSAR, LiDAR, and multibeam mapping both onshore and offshore (see Bathymetry Hillshade--Offshore San Francisco, California, DS 781, for more information). References Cited Barnard, P.L., Eshelman, J., Erikson, L., and Hanes, D.M., 2007, Coastal processes study at Ocean Beach, San Francisco, CA: Summary of data collection 2004-2006: U.S. Geological Survey Open-File Report 2007-1217, 165 p. Barnard, P.L., Hanes, D.M., Kvitek, R.G., and Iampietro, P.J., 2006a, Sand waves at the mouth of San Francisco Bay, California: U.S. Geological Survey Scientific Investigations Map 2944, 5 sheets. Barnard, P.L., Hanes, D.M., Rubin, D.M., and Kvitek, R.G., 2006b, Giant sand waves at the mouth of San Francisco Bay: EOS, V. 87, p. 285, 289. Cacchione, D.A., Drake, D.E., Grant, W.D., and Tate, G.B., 1984. Rippled scour depressions of the inner continental shelf off central California: Journal of Sedimentary Petrology, v 54, p. 1280-1291. Dallas, K.L., and Barnard, P.L., 2011, Anthropogenic influences on shoreline and nearshore evolution in the San Francisco coastal system: Estuarine Coastal and Shelf Science, v. 92, p. 195-204. This layer is presented in the WGS84 coordinate system for web display purposes. Downloadable data are provided in native coordinate system or projection.
-
Title: Habitat: Offshore of Salt Point, California, 2014
- Polygon data
- 2014
- Not owned by MIT (Owned by Stanford)
- Greene, H. G.
- Endris, Charles A.
- Dieter, Bryan E.
- Golden, Nadine E.
- Moss Landing Marine Laboratories
Summary: This polygon shapefile contains locations of potential benthic habitats for the offshore area of Salt Point, California. Using multibeam echosounder (MBES) bathymetry and backscatter data, potential marine benthic habitat maps were constructed. The habitats were based on substrate types and documented or "ground truthed" using underwater video images and seafloor samples obtained by the USGS. These maps display various habitat types that range from flat, soft, unconsolidated sediment-covered seafloor to hard, deformed (folded), or highly rugose and differentially eroded bedrock exposures. Rugged, high-relief, rocky outcrops that have been eroded to form ledges and small caves are ideal habitat for rockfish (Sebastes spp.) and other bottom fish such as lingcod (Ophiodon elongatus). A map that shows these data is published in Open-File Report 2015–1098, "California State Waters Map Series- Offshore of Salt Point, California." This layer is a part of USGS DS 781. In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP) to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats and geology within the 3-nautical-mile limit of California's State Waters. CSMP has divided coastal California into 110 map blocks, each to be published individually as United States Geological Survey Open-File Reports (OFRs) or Scientific Investigations Maps (SIMs) at a scale of 1:24,000. Maps display seafloor morphology and character, identify potential marine benthic habitats and illustrate both the seafloor geology and shallow (to about 100 m) subsurface geology. Data layers for bathymetry, bathymetric contours, acoustic backscatter, seafloor character, potential benthic habitat and offshore geology were created for each map block, as well as regional-scale data layers for sediment thickness, depth to transition, transgressive contours, isopachs, predicted distributions of benthic macro-invertebrates and visual observations of benthic habitat from video cruises over the entire state. The purpose of this work is to construct nine potential marine benthic habitat maps characterized after Greene et al. (1999, 2007). These habitat maps are constructed in the same manner as the maps completed for phase I of the California Seafloor Mapping Program (CSMP). These data are intended for science researchers, students, policy makers, and the general public. This information is not intended for navigational purposes.The data can be used with geographic information systems (GIS) software to display geologic and oceanographic information. Additionally, this coverage can provide a geologic map for the public and geoscience community to aid in assessments and mitigation of geologic hazards in the coastal region and sufficient geologic information for land-use and land-management decisions both onshore and offshore. This information is not intended for navigational purposes. Endris, C.A., Greene, H.G. and Dieter, B.E. (2014). Habitat: Offshore of Salt Point, California, 2014. California State Waters Map Series Data Catalog: U.S. Geological Survey Data Series 781. Available at: http://purl.stanford.edu/rh828nz6486. Data used for the creation of the potential marine benthic habitat interpretation consists of multibeam bathymetry, acoustic backscatter, sediment samples, camera-sled imagery, and existing geologic and seafloor interpretive maps. All data were compiled and displayed for interpretation using ESRI ArcGIS software, ArcMap v.10.0. The process consists of editing a shapefile within ArcMap, beginning with the construction of polygons to delineate benthic features. A benthic feature is an area with common characteristics which can be characterized as a single potential habitat type. The boundaries and extents of these features were determined from the bathymetric data. In general, interpretations were made at scales between 1:2,000 and 1:5,000. The USGS kindly provided the Center for Habitat Studies with a geodatabase consisting of feature datasets delineating geologic features and attributes for offshore Salt Point. Some of the delineated polygons were preserved as part of the potential marine benthic habitat characterization. However, the Greene and others (2007) code was used in attributing the dataset and additional polygons were added using the methods outlined below. High-resolution multibeam sonar data in the form of bathymetric depth grids (seafloor digital elevation models, referred to as the "bathymetry") were the primary data used in the interpretation of potential habitat types. Shaded-relief imagery ("hillshade") allows for visualization of the terrain and interpretation of submarine landforms. On the basis of these hillshades, areas of rock were identified by their often sharply defined edges and high relative relief; these may be contiguous outcrops, isolated parts of outcrop protruding through sediment cover (pinnacles), or isolated boulders. Although these types of features can be confidently characterized as exposed rock, it is not uncommon to find areas within or around the rocky feature that appear to be covered by a thin veneer of sediment. These areas are identified as "mixed" induration, containing both rock and sediment. Broad areas of the seafloor lacking sharp and angular characteristics are considered to be sediment. Sedimentary features may contain erosional or depositional characteristics recognizable in the bathymetry, such as dynamic bedforms (dunes or sand waves). General morphologic features such as scours, mounds, and depressions were also identified using the hillshade imagery. The combination of acoustic backscatter data and "ground truthed" sediment samples were used to delineate seafloor sediment types within areas identified as "soft (s)" induration. Initially, ground truth data, in the form of grab sample descriptions and average grain size measurements, were categorized into four grain-size categories: mud (m), muddy sand (s/m), sand (s), and sandy gravel (s/g). Backscatter data was then classified into four intensity categories (low, med, high, very high) that are assumed to correspond to relative grain sizes. The aim was to develop an intensity classification of the seafloor that correlated with the data collected from the sediment samples. Thus, the combination of remotely observed data (acoustic backscatter) and directly observed data (sediment grab samples) translates to higher confidence in our ability to interpret broad areas of the seafloor. Nonetheless, we caution against using our sediment type interpretations as anything more than "best-guess" because of the following issues: characterization of contiguous sediment bodies is a difficult procedure because even small areas can exhibit a wide spectrum of backscatter-intensity values that lack distinct boundaries; backscatter intensity can be affected by depth, vegetation, water column conditions, and seafloor relief; and directly observed sediment data, in the form of sediment samples, represents a very small area relative to remotely observed data, requiring broad areas of interpolation. Please refer to Greene and others (2007) for more information regarding the Benthic Marine Potential Habitat Classification Scheme and the codes used to represent various seafloor features. References Cited: Greene, H.G., Bizzarro, J.J., O'Connell, V.M., and Brylinsky, C.K., 2007, Construction of digital potential marine benthic habitat maps using a coded classification scheme and its application, in Todd, B.J., and Greene, H.G., eds., Mapping the seafloor for habitat characterization: Geological Association of Canada Special Paper 47, p. 141-155. Greene, H.G., Yoklavich, M.M., Starr, R.M., O'Connell, V.M., Wakefield, W.W., Sullivan, D.E., McRea, J.E., Jr., and Cailliet, G.M., 1999, A classification scheme for deep seafloor habitats: Oceanologica Acta, v. 22, no. 6, p. 663-678. This layer is presented in the WGS84 coordinate system for web display purposes. Downloadable data are provided in native coordinate system or projection.
-
Title: Folds: Offshore of Bolinas, California, 2009
- Line data
- 2014
- Not owned by MIT (Owned by Stanford)
- Endris, Charles A.
- Watt, Janet T.
- Manson, Michael W.
- Johnson, Samuel Y.
- Greene, H. G.
- Hartwell, Stephen R.
- Golden, Nadine E.
- Pacific Coastal and Marine Science Center
Summary: This line shapefile represents geologic folds within the offshore area of Bolinas, California. The map area straddles the right-lateral transform boundary between the North American and Pacific plates and is cut by several active faults that cumulatively form a distributed shear zone, including the San Andreas Fault, the eastern strand of the San Gregorio Fault, the Golden Gate Fault, and the Potato Patch Fault (Bruns and others, 2002; Ryan and others, 2008). These faults are covered by sediment (mostly unit Qms) with no seafloor expression, and are mapped using seismic-reflection data (see field activities S-8-09-NC and L-1-06-SF). The San Andreas Fault is the primary plate-boundary structure and extends northwest through the southern part of the map area before passing onshore at Bolinas Lagoon. This section of the San Andreas Fault has an estimated slip rate of 17 to 24 mm/yr (U.S. Geological Survey, 2010), and the devastating Great 1906 California earthquake (M 7.8) is thought to have nucleated on the San Andreas a few kilometers south of this map area offshore of San Francisco (e.g., Bolt, 1968; Lomax, 2005). The San Andreas Fault forms the boundary between two distinct basement terranes, Upper Jurassic and Lower Cretaceous melange and graywacke sandstone of the Franciscan Complex to the east, and Late Cretaceous granitic and older metamorphic rocks of the Salinian block to the west. Franciscan Complex rocks (unit KJf, undivided) form seafloor outcrops adjacent to the shoreline southeast of Stinson Beach that are commonly continuous with onshore coastal outcrops. Folds were primarily mapped by interpretation of seismic reflection profile data (see field activities S-8-09-NC and L-1-06-SF). The seismic reflection profiles were collected between 2006 and 2009. In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP) to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats and geology within the 3-nautical-mile limit of California's State Waters. CSMP has divided coastal California into 110 map blocks, each to be published individually as United States Geological Survey Open-File Reports (OFRs) or Scientific Investigations Maps (SIMs) at a scale of 1:24,000. Maps display seafloor morphology and character, identify potential marine benthic habitats and illustrate both the seafloor geology and shallow (to about 100 m) subsurface geology. Data layers for bathymetry, bathymetric contours, acoustic backscatter, seafloor character, potential benthic habitat and offshore geology were created for each map block, as well as regional-scale data layers for sediment thickness, depth to transition, transgressive contours, isopachs, predicted distributions of benthic macro-invertebrates and visual observations of benthic habitat from video cruises over the entire state. These data are intended for science researchers, students, policy makers, and the general public. This information is not intended for navigational purposes.The data can be used with geographic information systems (GIS) software to display geologic and oceanographic information. Additionally, this coverage can provide a geologic map for the public and geoscience community to aid in assessments and mitigation of geologic hazards in the coastal region and sufficient geologic information for land-use and land-management decisions both onshore and offshore. This information is not intended for navigational purposes. Johnson, S.Y., Greene, H.G., Manson, M.W., Hartwell, S.R., Endris, C.A., and Watt, J.T. (2014). Folds: Offshore of Bolinas, California, 2009. California State Waters Map Series Data Catalog: U.S. Geological Survey Data Series 781. Available at: http://purl.stanford.edu/xd152xm7498. Map political location: Marin County, California Compilation scale: 1:24,000 Base maps used are hillshades generated from IfSAR, LiDAR, and multibeam mapping both onshore and offshore (see Bathymetry Hillshade--Offshore Bolinas, California, DS 781, for more information). . References Cited Bolt, B.A., 1968, The focus of the 1906 California earthquake: Bulletin of the Seismological Society of America, v. 58, p. 457-471. Bruns, T.R., Cooper, A.K., Carlson, P.R., and McCulloch, D.S., 2002, Structure of the submerged San Andreas and San Gregorio fault zones in the Gulf of Farallones as inferred from high-resolution seismic-reflection data, in Parsons, T. (ed.), Crustal structure of the coastal and marine San Francisco Bay region, California: U.S. Geological Survey Professional Paper 1658, p. 77-117. Lomax, A., 2005, A reanalysis of the hypocentral location and related observations for the Great 1906 California earthquake: Bulletin of the Seismological Society of America, v. 95, p. 861-877. Ryan, H.F., Parsons, T., and Sliter, R.W., 2008. Vertical tectonic deformation associated with the San Andreas fault zone offshore of San Francisco, California. Tectonphysics, 429 (1-2), p. 209-224. U.S. Geological Survey and California Geological Survey, 2010, Quaternary fault and fold database for the United States, accessed April 5, 2012, from USGS website: http://earthquake.usgs.gov/hazards/qfaults/. This layer is presented in the WGS84 coordinate system for web display purposes. Downloadable data are provided in native coordinate system or projection.
-
Title: Faults: Offshore of San Francisco, California, 2010
- Line data
- 2014
- Not owned by MIT (Owned by Stanford)
- Greene, H. G.
- Endris, Charles A.
- Bruns, Terry R.
- Johnson, Samuel Y.
- Hartwell, Stephen R.
- Manson, Michael W.
- Golden, Nadine E.
- Pacific Coastal and Marine Science Center
- Moss Landing Marine Laboratories
Summary: This line shapefile contains fault lines within the offshore area of San Francisco, California. The map area straddles the right-lateral transform boundary between the North American and Pacific plates and is cut by several active faults that cumulatively form a distributed shear zone, including the San Andreas Fault, the eastern strand of the San Gregorio Fault, the Golden Gate Fault, and the Potato Patch Fault (Bruns and others, 2002; Ryan and others, 2008). These faults are covered by Holocene sediments (mostly units Qms, Qmsb, Qmst) with no seafloor expression, and are mapped using seismic-reflection data (see field activities S-15-10-NC and F-2-07-NC). The San Andreas Fault is the primary plate-boundary structure and extends northwest across the map area; it intersects the shoreline 10 km north of the map area at Bolinas Lagoon, and 3 km south of the map area at Mussel Rock. This section of the San Andreas Fault has an estimated slip rate of 17 to 24 mm/yr (U.S. Geological Survey, 2010), and the devastating Great 1906 California earthquake (M 7.8) is thought to have nucleated on the San Andreas a few kilometers offshore of San Francisco within the map area (Bolt, 1968; Lomax, 2005). The San Andreas Fault forms the boundary between two distinct basement terranes, Upper Jurassic to Lower Cretaceous rocks of the Franciscan Complex to the east, and Late Cretaceous granitic and older metamorphic rocks of the Salinian block to the west. Franciscan Complex rocks (unit KJf, undivided) form seafloor outcrops at and north of Point Lobos adjacent to onland exposures. The Franciscan is divided into 13 different units for the onshore portion of this geologic map based on different lithologies and ages, but the unit cannot be similarly divided in the offshore because of a lack of direct observation and (or) sampling. Faults were primarily mapped by interpretation of seismic reflection profile data (see field activities S-15-10-NC and F-2-07-NC). The seismic reflection profiles were collected between 2007 and 2010. A map that shows these data is published in Open-File Report 2015-1068, "California State Waters Map Series--Offshore of San Francisco, California." This layer is part of USGS Data Series 781. In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP) to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats and geology within the 3-nautical-mile limit of California's State Waters. CSMP has divided coastal California into 110 map blocks, each to be published individually as United States Geological Survey Open-File Reports (OFRs) or Scientific Investigations Maps (SIMs) at a scale of 1:24,000. Maps display seafloor morphology and character, identify potential marine benthic habitats and illustrate both the seafloor geology and shallow (to about 100 m) subsurface geology. Data layers for bathymetry, bathymetric contours, acoustic backscatter, seafloor character, potential benthic habitat and offshore geology were created for each map block, as well as regional-scale data layers for sediment thickness, depth to transition, transgressive contours, isopachs, predicted distributions of benthic macro-invertebrates and visual observations of benthic habitat from video cruises over the entire state. This coverage can be used to to aid in assessments and mitigation of geologic hazards in the coastal region and to provide sufficient geologic information for land-use and land-management decisions both onshore and offshore. These data are intended for science researchers, students, policy makers, and the general public. This information is not intended for navigational purposes.The data can be used with geographic information systems (GIS) software to display geologic and oceanographic information. Greene, H.G., Johnson, S.Y., Manson, M.W., Hartwell, S.R., Endris, C.A., and Bruns, T.R. (2014). Faults: Offshore of San Francisco, California, 2010. California State Waters Map Series Data Catalog: U.S. Geological Survey Data Series 781. Available at: http://purl.stanford.edu/xw411td7423. Map political location: San Mateo County, California Compilation scale: 1:24,000 Base maps used are hillshades generated from IfSAR, LiDAR, and multibeam mapping both onshore and offshore (see Bathymetry Hillshade--Offshore San Francisco, California, DS 781, for more information). . References Cited Bolt, B.A., 1968, The focus of the 1906 California earthquake: Bulletin of the Seismological Society of America, v. 58, p. 457-471. Bruns, T.R., Cooper, A.K., Carlson, P.R., and McCulloch, D.S., 2002, Structure of the submerged San Andreas and San Gregorio fault zones in the Gulf of Farallones as inferred from high-resolution seismic-reflection data, in Parsons, T. (ed.), Crustal structure of the coastal and marine San Francisco Bay region, California: U.S. Geological Survey Professional Paper 1658, p. 77-117. Lomax, A., 2005, A reanalysis of the hypocentral location and related observations for the Great 1906 California earthquake: Bulletin of the Seismological Society of America, v. 95, p. 861-877. Ryan, H.F., Parsons, T., and Sliter, R.W., 2008. Vertical tectonic deformation associated with the San Andreas fault zone offshore of San Francisco, California. Tectonophysics, 429 (1-2), p. 209-224. U.S. Geological Survey and California Geological Survey, 2010, Quaternary fault and fold database for the United States, accessed April 5, 2012, from USGS website: http://earthquake.usgs.gov/hazards/qfaults/. This layer is presented in the WGS84 coordinate system for web display purposes. Downloadable data are provided in native coordinate system or projection.
-
Title: Habitat: Offshore of Carpinteria, California, 2013
- Polygon data
- 2013
- Not owned by MIT (Owned by Stanford)
Summary: This polygon shapefile contains potential benthic habitats within the offshore area of Carpinteria, California. Using multibeam echosounder (MBES) bathymetry and backscatter data, potential marine benthic habitat maps were constructed. The habitats were based on substrate types and documented or "ground truthed" using underwater video images and seafloor samples obtained by the USGS. These maps display various habitat types that range from flat, soft, unconsolidated sediment-covered seafloor to hard, deformed (folded), or highly rugose and differentially eroded bedrock exposures. Rugged, high-relief, rocky outcrops that have been eroded to form ledges and small caves are ideal habitat for rockfish (Sebastes spp.) and other bottom fish such as lingcod (Ophiodon elongatus). In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP) to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats and geology within the 3-nautical-mile limit of California's State Waters. CSMP has divided coastal California into 110 map blocks, each to be published individually as United States Geological Survey Open-File Reports (OFRs) or Scientific Investigations Maps (SIMs) at a scale of 1:24,000. Maps display seafloor morphology and character, identify potential marine benthic habitats and illustrate both the seafloor geology and shallow (to about 100 m) subsurface geology. Data layers for bathymetry, bathymetric contours, acoustic backscatter, seafloor character, potential benthic habitat and offshore geology were created for each map block, as well as regional-scale data layers for sediment thickness, depth to transition, transgressive contours, isopachs, predicted distributions of benthic macro-invertebrates and visual observations of benthic habitat from video cruises over the entire state. This work is one of nine potential marine benthic habitat maps characterized after Greene and others (1999, 2007). These data are intended for science researchers, students, policy makers, and the general public. This information is not intended for navigational purposes.The data can be used with geographic information systems (GIS) software to display geologic and oceanographic information. Additionally, this coverage can provide a geologic map for the public and geoscience community to aid in assessments and mitigation of geologic hazards in the coastal region and sufficient geologic information for land-use and land-management decisions both onshore and offshore. This information is not intended for navigational purposes. U.S. Geological Survey. (2013). Habitat: Offshore of Carpinteria, California, 2013. California State Waters Map Series Data Catalog: U.S. Geological Survey Data Series 781. Available at: http://purl.stanford.edu/pm328cr6653. Data used for the creation of the potential marine benthic habitat interpretation consists of multibeam bathymetry, acoustic backscatter, sediment samples, camera-sled imagery, and existing geologic and seafloor interpretive maps. All data were compiled and displayed for interpretation using ESRI ArcGIS software, ArcMap v.9.3. The process consists of editing a shapefile within ArcMap, beginning with the construction of polygons to delineate benthic features. A benthic feature is an area with common characteristics which can be characterized as a single potential habitat type. The boundaries and extents of these features were determined from the bathymetric data. In general, interpretations were made at scales between 1:2,000 and 1:5,000. The USGS kindly provided the Center for Habitat Studies with a geodatabase consisting of feature datasets delineating geologic features and attributes for the Santa Barbara Channel. Some of the delineated polygons were preserved as part of the potential marine benthic habitat characterization. However, the Greene and others (2007) code was used in attributing the dataset and additional polygons were added using the methods outlined below. High-resolution multibeam sonar data in the form of bathymetric depth grids (seafloor digital elevation models, referred to as the "bathymetry") were the primary data used in the interpretation of potential habitat types. Shaded-relief imagery ("hillshade") allows for visualization of the terrain and interpretation of submarine landforms. On the basis of these hillshades, areas of rock were identified by their often sharply defined edges and high relative relief; these may be contiguous outcrops, isolated parts of outcrop protruding through sediment cover (pinnacles), or isolated boulders. Although these types of features can be confidently characterized as exposed rock, it is not uncommon to find areas within or around the rocky feature that appear to be covered by a thin veneer of sediment. These areas are identified as "mixed" induration, containing both rock and sediment. Broad areas of the seafloor lacking sharp and angular characteristics are considered to be sediment. Sedimentary features may contain erosional or depositional characteristics recognizable in the bathymetry, such as dynamic bedforms (dunes or sand waves). General morphologic features such as scours, mounds, and depressions were also identified using the hillshade imagery. The combination of acoustic backscatter data and "ground truthed" sediment samples were used to delineate seafloor sediment types within areas identified as "soft (s)" induration. Initially, ground truth data, in the form of grab sample descriptions and average grain size measurements, were categorized into four grain-size categories: mud (m), muddy sand (s/m), sand (s), and sandy gravel (s/g). Backscatter data was then classified into four intensity categories (low, med, high, very high) that are assumed to correspond to relative grain sizes. The aim was to develop an intensity classification of the seafloor that correlated with the data collected from the sediment samples. Thus, the combination of remotely observed data (acoustic backscatter) and directly observed data (sediment grab samples) translates to higher confidence in our ability to interpret broad areas of the seafloor. Nonetheless, we caution against using our sediment type interpretations as anything more than "best-guess" because of the following issues: characterization of contiguous sediment bodies is a difficult procedure because even small areas can exhibit a wide spectrum of backscatter-intensity values that lack distinct boundaries; backscatter intensity can be affected by depth, vegetation, water column conditions, and seafloor relief; and directly observed sediment data, in the form of sediment samples, represents a very small area relative to remotely observed data, requiring broad areas of interpolation. Please refer to Greene and others (2007) for more information regarding the Benthic Marine Potential Habitat Classification Scheme and the codes used to represent various seafloor features. References Cited: Greene, H.G., Bizzarro, J.J., O'Connell, V.M., and Brylinsky, C.K., 2007, Construction of digital potential marine benthic habitat maps using a coded classification scheme and its application, in Todd, B.J., and Greene, H.G., eds., Mapping the seafloor for habitat characterization: Geological Association of Canada Special Paper 47, p. 141-155. Greene, H.G., Yoklavich, M.M., Starr, R.M., O'Connell, V.M., Wakefield, W.W., Sullivan, D.E., McRea, J.E., Jr., and Cailliet, G.M., 1999, A classification scheme for deep seafloor habitats: Oceanologica Acta, v. 22, no. 6, p. 663-678. This layer is presented in the WGS84 coordinate system for web display purposes. Downloadable data are provided in native coordinate system or projection.
-
Title: Seafloor Character: Offshore of San Gregorio, California, 2007
- Raster data
- 2013
- Not owned by MIT (Owned by Stanford)
Summary: This layer is a georeferenced raster image containing seafloor character data for the offshore area of San Gregorio, California. Using multibeam echosounder (MBES) bathymetry and backscatter data, potential marine benthic habitat maps were constructed. The habitats were based on substrate types and documented or "ground truthed" using underwater video images and seafloor samples obtained by the USGS. These maps display various habitat types that range from flat, soft, unconsolidated sediment-covered seafloor to hard, deformed (folded), or highly rugose and differentially eroded bedrock exposures. Rugged, high-relief, rocky outcrops that have been eroded to form ledges and small caves are ideal habitat for rockfish (Sebastes spp.) and other bottom fish such as lingcod (Ophiodon elongatus). A map that shows these data is published in Scientific Investigations Map 3306, "California State Waters Map Series--Offshore of San Gregorio, California." This layer is part of USGS Data Series 781. In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP) to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats and geology within the 3-nautical-mile limit of California's State Waters. CSMP has divided coastal California into 110 map blocks, each to be published individually as United States Geological Survey Open-File Reports (OFRs) or Scientific Investigations Maps (SIMs) at a scale of 1:24,000. Maps display seafloor morphology and character, identify potential marine benthic habitats and illustrate both the seafloor geology and shallow (to about 100 m) subsurface geology. Data layers for bathymetry, bathymetric contours, acoustic backscatter, seafloor character, potential benthic habitat and offshore geology were created for each map block, as well as regional-scale data layers for sediment thickness, depth to transition, transgressive contours, isopachs, predicted distributions of benthic macro-invertebrates and visual observations of benthic habitat from video cruises over the entire state. These data are intended for science researchers, students, policy makers, and the general public. This information is not intended for navigational purposes.The data can be used with geographic information systems (GIS) software to display geologic and oceanographic information. Additionally, this coverage can provide a geologic map for the public and geoscience community to aid in assessments and mitigation of geologic hazards in the coastal region and sufficient geologic information for land-use and land-management decisions both onshore and offshore. This information is not intended for navigational purposes. Endris, C.A, Greene, H.G., and Golden, N.E. (2013). Seafloor Character: Offshore of San Gregorio, California, 2007. California State Waters Map Series Data Catalog: U.S. Geological Survey Data Series 781. Available at: http://purl.stanford.edu/yf324sm3507. Data used for the creation of the potential marine benthic habitat interpretation consists of multibeam bathymetry, acoustic backscatter, sediment samples, camera-sled imagery, and existing geologic and seafloor interpretive maps. All data were compiled and displayed for interpretation using ESRI ArcGIS software, ArcMap v.10.0. The process consists of editing a shapefile within ArcMap, beginning with the construction of polygons to delineate benthic features. A benthic feature is an area with common characteristics which can be characterized as a single potential habitat type. The boundaries and extents of these features were determined from the bathymetric data. In general, interpretations were made at scales between 1:2,000 and 1:5,000. The USGS kindly provided the Center for Habitat Studies with a geodatabase consisting of feature datasets delineating geologic features and attributes for offshore San Gregorio. Some of the delineated polygons were preserved as part of the potential marine benthic habitat characterization. However, the Greene and others (2007) code was used in attributing the dataset and additional polygons were added using the methods outlined below. High-resolution multibeam sonar data in the form of bathymetric depth grids (seafloor digital elevation models, referred to as the "bathymetry") were the primary data used in the interpretation of potential habitat types. Shaded-relief imagery ("hillshade") allows for visualization of the terrain and interpretation of submarine landforms. On the basis of these hillshades, areas of rock were identified by their often sharply defined edges and high relative relief; these may be contiguous outcrops, isolated parts of outcrop protruding through sediment cover (pinnacles), or isolated boulders. Although these types of features can be confidently characterized as exposed rock, it is not uncommon to find areas within or around the rocky feature that appear to be covered by a thin veneer of sediment. These areas are identified as "mixed" induration, containing both rock and sediment. Broad areas of the seafloor lacking sharp and angular characteristics are considered to be sediment. Sedimentary features may contain erosional or depositional characteristics recognizable in the bathymetry, such as dynamic bedforms (dunes or sand waves). General morphologic features such as scours, mounds, and depressions were also identified using the hillshade imagery. The combination of acoustic backscatter data and "ground truthed" sediment samples were used to delineate seafloor sediment types within areas identified as "soft (s)" induration. Initially, ground truth data, in the form of grab sample descriptions and average grain size measurements, were categorized into four grain-size categories: mud (m), muddy sand (s/m), sand (s), and sandy gravel (s/g). Backscatter data was then classified into four intensity categories (low, med, high, very high) that are assumed to correspond to relative grain sizes. The aim was to develop an intensity classification of the seafloor that correlated with the data collected from the sediment samples. Thus, the combination of remotely observed data (acoustic backscatter) and directly observed data (sediment grab samples) translates to higher confidence in our ability to interpret broad areas of the seafloor. Nonetheless, we caution against using our sediment type interpretations as anything more than "best-guess" because of the following issues: characterization of contiguous sediment bodies is a difficult procedure because even small areas can exhibit a wide spectrum of backscatter-intensity values that lack distinct boundaries; backscatter intensity can be affected by depth, vegetation, water column conditions, and seafloor relief; and directly observed sediment data, in the form of sediment samples, represents a very small area relative to remotely observed data, requiring broad areas of interpolation. Please refer to Greene and others (2007) for more information regarding the Benthic Marine Potential Habitat Classification Scheme and the codes used to represent various seafloor features. References Cited: Greene, H.G., Bizzarro, J.J., O'Connell, V.M., and Brylinsky, C.K., 2007, Construction of digital potential marine benthic habitat maps using a coded classification scheme and its application, in Todd, B.J., and Greene, H.G., eds., Mapping the seafloor for habitat characterization: Geological Association of Canada Special Paper 47, p. 141-155. Greene, H.G., Yoklavich, M.M., Starr, R.M., O'Connell, V.M., Wakefield, W.W., Sullivan, D.E., McRea, J.E., Jr., and Cailliet, G.M., 1999, A classification scheme for deep seafloor habitats: Oceanologica Acta, v. 22, no. 6, p. 663-678. This layer is presented in the WGS84 coordinate system for web display purposes. Downloadable data are provided in native coordinate system or projection.
-
Title: Folds: Offshore of San Gregorio, California, 2010
- Line data
- 2013
- Not owned by MIT (Owned by Stanford)
- Ross, Stephanie L.
- Dieter, Bryan E.
- Greene, H. G.
- Watt, Janet T.
- Endris, Charles A.
- Phillips, Eleyne L.
- Hartwell, Stephen R.
- Golden, Nadine E.
- Moss Landing Marine Laboratories
- Pacific Coastal and Marine Science Center
Summary: This line shapefile depicts geologic folds within the offshore area of San Gregorio, California. The offshore San Gregorio map area lies about 15 to 25 km southwest of the San Andreas Fault, the dominant structure in the distributed transform boundary between the North American and Pacific plates. The map area straddles the right-lateral San Gregorio Fault zone, a prominent structure west of the San Andreas Fault in the broader San Andreas Fault system. The San Gregorio Fault zone occurs predominantly in the offshore and extends 400 km from Point Conception on the south to Bolinas and Point Reyes on the north (Dickinson and others, 2005), coming onland at coastal promontories such as Pescadero Point in the map area and Pillar Point, a few km north of Half Moon Bay (sheet 9). In the offshore, the San Gregorio Fault system forms a distributed shear zone about 2 to 4 km wide that includes two main diverging fault strands. The western strand (also known as the Frijoles Fault) extends offshore from Pescadero Point. The eastern strand (also known as the Coastways Fault or Seal Cove Fault), is mostly onshore in this map area. Cumulative lateral slip on the San Gregorio Fault zone is thought to range from 4 to 10 mm/yr in this region (U.S. Geological Survey, 2010). The western strand of the San Gregorio Fault zone (i.e., Frijoles Fault) forms the eastern boundary of the Pigeon Point high. A map that shows these data is published in Scientific Investigations Map 3306, "California State Waters Map Series--Offshore of San Gregorio, California." This layer is part of USGS Data Series 781. In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP) to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats and geology within the 3-nautical-mile limit of California's State Waters. CSMP has divided coastal California into 110 map blocks, each to be published individually as United States Geological Survey Open-File Reports (OFRs) or Scientific Investigations Maps (SIMs) at a scale of 1:24,000. Maps display seafloor morphology and character, identify potential marine benthic habitats and illustrate both the seafloor geology and shallow (to about 100 m) subsurface geology. Data layers for bathymetry, bathymetric contours, acoustic backscatter, seafloor character, potential benthic habitat and offshore geology were created for each map block, as well as regional-scale data layers for sediment thickness, depth to transition, transgressive contours, isopachs, predicted distributions of benthic macro-invertebrates and visual observations of benthic habitat from video cruises over the entire state. This coverage can be used to to aid in assessments and mitigation of geologic hazards in the coastal region and to provide sufficient geologic information for land-use and land-management decisions both onshore and offshore. These data are intended for science researchers, students, policy makers, and the general public. This information is not intended for navigational purposes.The data can be used with geographic information systems (GIS) software to display geologic and oceanographic information. U.S. Geological Survey. (2013). Folds: Offshore of San Gregorio, California, 2010. California State Waters Map Series Data Catalog: U.S. Geological Survey Data Series 781. Available at: http://purl.stanford.edu/pb119xp8428. Map political location: San Mateo County, California Compilation scale: 1:24,000 Base maps used are hillshades generated from IfSAR, LiDAR, and multibeam mapping both onshore and offshore (see sheet 2, SIM 3306, for more information). References Cited Dickinson, W.R., Ducea, M., Rosenberg, L.I., Greene, H.G., Graham, S.A., Clark, J.C., Weber, G.E., Kidder, S., Ernst, W.G., and Brabb, E.E., 2005, Net dextral slip, Neogene San Gregorio-Hosgri fault zone, coastal California: Geologic evidence and tectonic implications: Geological Society of America Special Paper 391, 43 p. This layer is presented in the WGS84 coordinate system for web display purposes. Downloadable data are provided in native coordinate system or projection.