3,672 results returned
-
Title: Future Erosion, San Mateo County Sea Level Rise Vulnerability Assessment Project, 2008
Contributors:- Polygon data
- 2019
Summary: This polygon shapefile represents the projected extent of coastal erosion expected with 4.6 feet of sea level rise. The points depicted represent the highest estimated 100 yr tide elevation for locations surrounding the San Francisco Bay. Source: Pacific Institute. Source Date: 2008. This layer is part of the San Mateo County Sea Level Rise Vulnerability Assessment Project. These data are intended for researchers, students, and policy makers for reference and mapping purposes, and may be used for basic applications such as viewing, querying, and map output production. County of San Mateo Information Services Department and Pacific Institute. (2019). Future Erosion, San Mateo County Sea Level Rise Vulnerability Assessment Project, 2008. County of San Mateo Information Services Department. Available at: http://purl.stanford.edu/qq750jp2957. This layer is presented in the WGS84 coordinate system for web display purposes. Downloadable data are provided in native coordinate system or projection.
-
Title: Map Of An Exploring Expedition To The Rocky Mountains in the Year 1842, Oregon & North California In The Years 1843-44. By Brevet Capt. J. C. Fremont Of The Corps Of Topographical Engineers Under the orders of Col. J.J. Abert, Chief Of The Topographical Bureau. Lith. by E. Weber & Co. Baltimore, Md (Raster Image)
Contributors:- Raster data
- 2015
Summary: The large map of the west is one of the most interesting and beautiful government maps of the 1840's. It filled in many of the gaps in cartographic knowledge of the west. Charles Preuss was the cartographer. Map is without color. Book is bound with full leather with "Executive Documents 2d Sess. 28th Cong." on the spine in gold. Appears in "Report of The Exploring Expedition to The Rocky Mountains in the Year 1842, and to Oregon and North California in the Years 1843-'44." The historic map layers in the Google Earth Rumsey Map Collection have been selected by David Rumsey from his large collection of historical maps, as well as some from other collections with which he collaborates. All the maps contain rich information about the past and represent a sampling of time periods, scales, and cartographic art, resulting in visual history stories that only old maps can tell. Each map has been georeferenced by Rumsey, thus creating unique digital map images that allow the old maps to appear in their correct places on the modern globe. Some of the maps fit perfectly in their modern spaces, while othersgenerally earlier period mapsreveal interesting geographical misconceptions of their time. Cultural features on the maps can be compared to the modern satellite views using the slider bars to adjust transparency. The result is an exploration of time as well as space, a marriage of historic cartographic masterpieces with innovative contemporary software tools.
-
Title: Climatic Map Of California. Published By The Southern Pacific Company. 1888. Compiled by E. McD. Johnstone, S.P. Co. From Map Prepared Under The Direction Of Brig. Gen. H.C. Wright, Chief Of Eng'rs. U.S.A. Lith H.S. Crocker & Co. S.F. Cal. Entered ... 1887, by the Southern Pacific Company ... Washington ... (Raster Image)
Contributors:- Raster data
- 2015
Summary: Second edition. Shows the different temperature zones of the state by use of color. Also used as a promotional broadside for the Southern Pacific Railroad. Above the map reads "If You Intend To Travel Take The "Sunset Route" Of The Southern Pacific Company." The historic map layers in the Google Earth Rumsey Map Collection have been selected by David Rumsey from his large collection of historical maps, as well as some from other collections with which he collaborates. All the maps contain rich information about the past and represent a sampling of time periods, scales, and cartographic art, resulting in visual history stories that only old maps can tell. Each map has been georeferenced by Rumsey, thus creating unique digital map images that allow the old maps to appear in their correct places on the modern globe. Some of the maps fit perfectly in their modern spaces, while othersgenerally earlier period mapsreveal interesting geographical misconceptions of their time. Cultural features on the maps can be compared to the modern satellite views using the slider bars to adjust transparency. The result is an exploration of time as well as space, a marriage of historic cartographic masterpieces with innovative contemporary software tools.
-
Title: San Francisco, California 1915 (Raster Image)
Contributors:- Raster data
- 2008
Summary: This layer is a georeferenced raster image of the historic paper map entitled: San Francisco and vicinity. It was published by Southern Pacific Company in 1915. Scale [ca. 1:30,800]. The image inside the map neatline is georeferenced to the surface of the earth and fit to the California Zone III State Plane Coordinate System NAD83 (in Feet) (Fipszone 0403). All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as roads, railroads, street car routes, drainage, selected public buildings, parks, cemeteries, wharves, and more. Also shows the grounds of Panama-Pacific International Exposition. Relief is shown by hachures. Includes inset: San Francisco and adjacent territory. Also includes indexes to points of interest. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.
-
Title: San Francisco and vicinity
Contributors:- Not specified
- 1914
Summary: Extent: 1 map Notes: Includes indexes and inset of "San Francisco and adjacent territory.". Text of "San Francisco, what to see, how to see it," map of "Southern Pacific and connections," and ill. on verso.
-
Title: Map of the United States showing the Texas & Pacific Railway and its connections, November, 1875
Contributors:- Not specified
- 1875
Summary: Relief shown by hachures.; In upper right margin: Map no. 2. 26 x 38 centimeters
-
Title: Alaska and the routes of the Canadian Pacific Railway Company's British Columbia coast steamers
Contributors:- Not specified
- 1917
Summary: Relief shown by spot heights.; Annotated.; Rail and steamship lines of the Canadian Pacific Railway shown in red; other railroads and trails shown in black.; "Checked to Dec. 1923, C.P. Ry. Lines."; "A 6044." 43 x 76 centimeters
-
Title: Map showing lands belonging to the Northern Pacific Railroad Co. in ... North Dakota
Contributors:- Not specified
- 1893
Summary: The shaded sections indicate Railroad Lands for sale. Map corrected to June 1st, 1893.; "Compiled and drawn by A.J. Pray." 86 x 67 centimeters
-
Title: Map to accompany report of Gen. G.M. Dodge, Chief Engineer on the crossing of the Missouri River, 1867
Contributors:- Not specified
- 1867
Summary: 1 map
-
Title: Ocean Depths: California Coast, 2000
Contributors:- Point data
- 2000
- California. Department of Fish and Game. Marine Resources Region
- Pacific Fishery Management Council (U.S.)
- United States. National Marine Fisheries Service
- United States. National Oceanic and Atmospheric Administration
Summary: This point shapefile depicts ocean depths gridded on a 5-minute latitude/longitude interval. This coverage was created from data extracted from the National Oceanic and Atmospheric Administration (NOAA) National Geophysical Data Center (NGDC) "TerrainBase" dataset. The TerrainBase global digital terrain model contains a complete matrix of land elevation and ocean depth values for the entire world. NGDC/World Data Center-A developed the model using the best public domain data available at the time of publication. The intended use of this coverage is as a companion dataset to the Department of Fish and Wildlife "Trawl Logbook Catch Grid," developed by the Pacific Fishery Management Council, the States of Washington, Oregon and California, and the National Marine Fisheries Service (see coverage "caltrawl" in Resource Details Supplemental Information). The coarse resolution of the estimated depths facilitates rapid display on microcomputer and comparative analysis of trawl block data. These data are not suitable for inshore habitat analysis nor for navigation purposes. California Department of Fish and Wildlife. (2000). Ocean Depths: California Coast, 2000. Marine Region GIS Lab. Available at: http://purl.stanford.edu/gc081vs0264. Converted to California Teale Albers NAD83 by the California Department of Fish and Game --BEGIN ORIGINAL METADATA - THIS INFORMATION MAY NOT BE CURRENT-- Identification_Information: Citation: Citation_Information: Originator: National Oceanic and Atmospheric Administration Originator: California Department of Fish and Game Publication_Date: 199707 Title: NOAA 5-minute Gridded Sea Floor Elevations Geospatial_Data_Presentation_Form: vector digital data Online_Linkage: \\Molib01\GIS_Library\Elevation\Water\Points\calbath5 Description: Abstract: Calbath5 is a point dataset of ocean depths gridded on a 5-minute latitude/longitude interval. This dataset was created from data extracted from the NOAA National Geophysical Data Center (NGDC) "TerrainBase" dataset. The TerrainBase global digital terrain model contains a complete matrix of land elevation and ocean depth values for the entire world. Purpose: Assess California coastwide ocean depths. Supplemental_Information: Converted to California Teale Albers NAD83 by the California Department of Fish and Game -- BEGIN ORIGINAL METADATA - THIS INFORMATION MAY NOT BE CURRENT -- DEPARTMENT OF FISH AND GAME -- GIS METADATA NOAA 5-minute Gridded Sea Floor Elevations COVERAGE NAME: calbath5 COVERAGE PATH: dfghost /tsb/dfgbase/gislib METADATA FILE: calbath5.txt METADATA DATE: July 11, 1997 ------------------------- COVERAGE DESCRIPTION: Calbath5 is a point coverage of ocean depths gridded on a 5-minute latitude/longitude interval. This coverage was created from data extracted from the NOAA National Geophysical Data Center (NGDC) "TerrainBase" dataset. The TerrainBase global digital terrain model contains a complete matrix of land elevation and ocean depth values for the entire world. NGDC/WDC-A developed the model using the best public domain data available at the time of publication. The intended use of calbath5 is as a companion dataset to the Department of Fish and Game "Trawl logbook catch grid", developed by the Pacific Fishery Management Council, the States of Washington, Oregon, and California, and the National Marine Fisheries Service (see coverage "caltrawl"). The coarse resolution of the estimated depths facilitates rapid display on microcomputer and comparative analysis of trawl block data. This coverage is not suitable for inshore habitat analysis nor for navigation. PROCESSING STEPS 1. Internet accessed NOAA/NGDC site: http://www.ngdc.noaa.gov/mgg/global/seltopo.html 2. Entered min/max decimal degree lat/long values for coverage caltrawl, plus a 0.1 degree buffer. 3. Selected output options: TerrainBase, ascii,lon/lat/datavalue, comma-delimited, Least Sig.Byte 1st. 4. In ARCVIEW, added comma-delimited table and created a new event theme. 5. Converted event theme to shapefile. 6. Extracted points within extent of coverage "caltrawl", plus manually extended buffer. Re-converted to a new shapefile. 7. Edited attributes, added meters, feet, fathom units. Constants: 1 meter = 3.2808 feet; 1 fathom = 6 feet. 8. Removed grid anomolies where offshore values had non-negative data values, i.e. where ocean points had elevations greater than zero. 9. Ran spatial join, adding item BLOCK10_ID from coverage "caltrawl". 10.In ARC/INFO ran shapearc to convert shapefile to a coverage. 11.Reprojected decimal degree coverage to Teale albers, using default datum. (NOAA/NGDC datum unknown) VITAL STATISTICS: Standard Teale Parameters? [x] YES; [ ] NO Datum: NAD 27 Projection: Albers Units: Meters 1st Std. Parallel: 34 00 00 (34.0 degrees N) 2nd Std. Parallel: 40 30 00 (40.5 degrees N) Longitude of Origin: -120 00 00 (120.0 degrees W) Latitude of Origin: 00 00 00 (0.0 degrees N) False Easting (X shift): 0 False Northing (Y shift): -4,000,000 Source: U.S. DOC NOAA/National Geophysical Data Center URL http://www.ngdc.noaa.gov/mgg/global/seltopo.html Source Media: digital file Source Projection: unprojected, geographic latitude/longitude Source Units: decimal degrees, elevations in meters Source Scale: various Capture Method: event theme created from NOAA data Conversion Software: [ ] PC-ARC/INFO; [x] Workstation ARC/INFO [x] ARCVIEW Version: 7.x (HP-UX 10.x); ARCVIEW 3.0 Data Structure: vector ARC/INFO Coverage Type: point ARC/INFO Precision: single ARC/INFO Tolerances: fuzzy= 112.354m; dangle= 1.0 m Number of Features: points: 3036 File Size: appx. 760K, uncompressed arc export file: calbath5.e00 Data Updated: 1997.07.11 DATA DICTIONARY: Structure for CALBATH5.PAT COL ITEM NAME WIDTH TYPE N.DEC DESCRIPTION 1 AREA 4 F 3 ARC/INFO default 5 PERIMETER 4 F 3 ARC/INFO default 9 CALBATH5# 4 B - ARC/INFO default 13 CALBATH5-ID 4 B - ARC/INFO default 17 LON 4 F 2 Longitude, decimal degrees 21 LAT 4 F 2 Latitude, decimal degrees 25 DATAVALUE 4 B - Original NOAA value, depth in meters 29 METERS 4 B - Absolute value of DATAVALUE 33 FEET 8 F 0 Depth in feet 41 FATHOMS 4 B - Depth in fathoms 45 BLOCK10_ID 6 I - DFG Trawl Block Identifier Description of item (field) values: BLOCK10-ID ---- ID corresponding to the block number appearing in the "Washington-Oregon-California Trawl Logbook". Due to misalignment of grids, instances of BLOCK10-ID in this coverage are only appoximate. DATA QUALITY ASSESSMENT: A term to describe the type of height values represented in the model (such as mean, mode, point, etc.) cannot be assigned to the TerrainBase model since it is comprised of a variety of source data. The type of terrain height represented by these source data sets varies from one model to the next. For example, the FNOC model has modal heights, while the USA model uses point heights, and the Europe model has mean heights. Consequently, it is not possible to assign a single term to represent all of the height values given in the TerrainBase model. To satisfy interested users, however, a term that can be used which is common to all of the source data is best estimate of height. That is, the data represent the best estimate of height for each 5-minute cell. Although such a term has minimal scientific value, it does emphasize the fact that the data only represent reasonable estimates of the height of the terrain (NOAA/NGDC 1997). METADATA CONTACT: =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= Paul Veisze, Spatial Data Coordinator California Department of Fish and Game Technical Services Branch -- GIS Unit 1730 I Street, Sacramento, CA 95814 Phone: 916-323-1667 \ Fax: 916-323-1431 ^---\-> Email: pveisze@dfg.ca.gov \ http://www.dfg.ca.gov =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= RESPONSIBILITY FOR DATA ACCURACY AND UPDATES: Topography/TerrainBase Technical data contact: Paula Dunbar, pdunbar@ngdc.noaa.gov. NOAA/NGDC Mail Code E/GC3, 325 Broadway Boulder, CO USA 80303. phone 303-497-3930, fax 303-497-6513 -- end of file calbath5.txt -- -- END ORIGINAL METADATA -- Time_Period_of_Content: Time_Period_Information: Single_Date/Time: Calendar_Date: 199707 Currentness_Reference: publication date Status: Progress: Complete Maintenance_and_Update_Frequency: None planned Spatial_Domain: Bounding_Coordinates: West_Bounding_Coordinate: -126.008643 East_Bounding_Coordinate: -116.667519 North_Bounding_Coordinate: 42.292535 South_Bounding_Coordinate: 32.047396 Keywords: Theme: Theme_Keyword_Thesaurus: none Theme_Keyword: elevation Theme_Keyword: oceans Theme_Keyword: bathymetry Place: Place_Keyword_Thesaurus: none Place_Keyword: California Access_Constraints: none Use_Constraints: none Native_Data_Set_Environment: Microsoft Windows 2000 Version 5.0 (Build 2195) Service Pack 3; ESRI ArcCatalog 8.3.0.800 Spatial_Data_Organization_Information: Direct_Spatial_Reference_Method: Vector Point_and_Vector_Object_Information: SDTS_Terms_Description: SDTS_Point_and_Vector_Object_Type: Entity point Point_and_Vector_Object_Count: 3036 SDTS_Terms_Description: SDTS_Point_and_Vector_Object_Type: Point Point_and_Vector_Object_Count: 4 Spatial_Reference_Information: Horizontal_Coordinate_System_Definition: Planar: Map_Projection: Map_Projection_Name: Albers Conical Equal Area Albers_Conical_Equal_Area: Standard_Parallel: 34.000000 Standard_Parallel: 40.500000 Longitude_of_Central_Meridian: -120.000000 Latitude_of_Projection_Origin: 0.000000 False_Easting: 0.000000 False_Northing: -4000000.000000 Planar_Coordinate_Information: Planar_Coordinate_Encoding_Method: coordinate pair Coordinate_Representation: Abscissa_Resolution: 0.002048 Ordinate_Resolution: 0.002048 Planar_Distance_Units: meters Geodetic_Model: Horizontal_Datum_Name: North American Datum of 1983 Ellipsoid_Name: Geodetic Reference System 80 Semi-major_Axis: 6378137.000000 Denominator_of_Flattening_Ratio: 298.257222 Entity_and_Attribute_Information: Detailed_Description: Entity_Type: Entity_Type_Label: calbath5.pat Attribute: Attribute_Label: FID Attribute_Definition: Internal feature number. Attribute_Definition_Source: ESRI Attribute_Domain_Values: Unrepresentable_Domain: Sequential unique whole numbers that are automatically generated. Attribute: Attribute_Label: Shape Attribute_Definition: Feature geometry. Attribute_Definition_Source: ESRI Attribute_Domain_Values: Unrepresentable_Domain: Coordinates defining the features. Attribute: Attribute_Label: AREA Attribute_Definition: Area of feature in internal units squared. Attribute_Definition_Source: ESRI Attribute_Domain_Values: Unrepresentable_Domain: Area is always zero for point coverages. Values are automatically generated. Attribute: Attribute_Label: PERIMETER Attribute_Definition: Perimeter of feature in internal units. Attribute_Definition_Source: ESRI Attribute_Domain_Values: Unrepresentable_Domain: Perimeter is always zero for point coverages. Values are automatically generated. Attribute: Attribute_Label: CALBATH5# Attribute_Definition: Internal feature number. Attribute_Definition_Source: ESRI Attribute_Domain_Values: Unrepresentable_Domain: Sequential unique whole numbers that are automatically generated. Attribute: Attribute_Label: CALBATH5-ID Attribute_Definition: User-defined feature number. Attribute_Definition_Source: ESRI Attribute: Attribute_Label: LON Attribute: Attribute_Label: LAT Attribute: Attribute_Label: DATAVALUE Attribute: Attribute_Label: METERS Attribute: Attribute_Label: FEET Attribute: Attribute_Label: FATHOMS Attribute: Attribute_Label: BLOCK10_ID Distribution_Information: Resource_Description: Downloadable Data Standard_Order_Process: Digital_Form: Digital_Transfer_Information: Transfer_Size: 0.396 Metadata_Reference_Information: Metadata_Date: 20030929 Metadata_Contact: Contact_Information: Contact_Organization_Primary: Contact_Organization: California Department of Fish and Game Contact_Person: GIS Service Center Contact_Address: Contact_Electronic_Mail_Address: geodata@dfg.ca.gov Metadata_Standard_Name: FGDC Content Standards for Digital Geospatial Metadata Metadata_Standard_Version: FGDC-STD-001-1998 Metadata_Time_Convention: local time Metadata_Extensions: Online_Linkage: http://www.esri.com/metadata/esriprof80.html Profile_Name: ESRI Metadata Profile --END ORIGINAL METADATA-- This layer is presented in the WGS84 coordinate system for web display purposes. Downloadable data are provided in native coordinate system or projection.
-
Title: Map of California illustrating its climatology, comparative area, rail lines, topography, etc., compiled from official and authentic sources
Contributors:- Not specified
- 1907
Summary: Relief shown by shading.; Shows rail lines, average temperatures, area in square miles.; Inset maps of Area and Average temperatures.; Index and text on verso. 64 x 52 centimeters
-
Title: Seafloor Character: Offshore of Refugio Beach, California, 2015
Contributors:- Raster data
- 2015
- Cochrane, Guy R.
- Phillips, Eleyne L.
- Erdey, Mercedes D.
- Golden, Nadine E.
- Pacific Coastal and Marine Science Center
Summary: This layer is a georeferenced raster image containing seafloor character data for the offshore area of Refugio Beach, California. A map that show these data are published in Scientific Investigations Map 3319, "California State Waters Map Series--Offshore of Refugio Beach, California." This layer is part of USGS Data Series 781. In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP) to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats and geology within the 3-nautical-mile limit of California's State Waters. CSMP has divided coastal California into 110 map blocks, each to be published individually as United States Geological Survey Open-File Reports (OFRs) or Scientific Investigations Maps (SIMs) at a scale of 1:24,000. Maps display seafloor morphology and character, identify potential marine benthic habitats and illustrate both the seafloor geology and shallow (to about 100 m) subsurface geology. Data layers for bathymetry, bathymetric contours, acoustic backscatter, seafloor character, potential benthic habitat and offshore geology were created for each map block, as well as regional-scale data layers for sediment thickness, depth to transition, transgressive contours, isopachs, predicted distributions of benthic macro-invertebrates and visual observations of benthic habitat from video cruises over the entire state. These data are intended for science researchers, students, policy makers, and the general public. This information is not intended for navigational purposes.The data can be used with geographic information systems (GIS) software to display geologic and oceanographic information. Additionally, this coverage can provide a geologic map for the public and geoscience community to aid in assessments and mitigation of geologic hazards in the coastal region and sufficient geologic information for land-use and land-management decisions both onshore and offshore. This information is not intended for navigational purposes. Phillips, E.L., Erdey, M.D., Cochrane, G.R. (2015). Seafloor Character: Offshore of Refugio Beach, California, 2015. California State Waters Map Series Data Catalog: U.S. Geological Survey Data Series 781. Available at: http://purl.stanford.edu/tt733rj5282. Information for USGS Coastal and Marine Geology related activities are online at http://walrus.wr.usgs.gov/infobank/z/z206sc/html/z-2-06-sc.meta.html and http://walrus.wr.usgs.gov/infobank/z/z107sc/html/z-1-07-sc.meta.html This layer is presented in the WGS84 coordinate system for web display purposes. Downloadable data are provided in native coordinate system or projection.
-
Title: Backscatter: Offshore of Refugio Beach, California, 2015
Contributors:- Raster data
- 2015
- Finlayson, David P.
- Dartnell, Peter
- Phillips, Eleyne L.
- Golden, Nadine E.
- Pacific Coastal and Marine Science Center
Summary: This layer is a georeferenced raster image containing acoustic-backscatter data for the offshore area of Refugio Beach, California. The acoustic-backscatter map of the area was generated from data collected by the U.S. Geological Survey (USGS). The USGS mapped this region in the summer 2008 using a 234.5 kHz SEA (AP) Ltd. SWATHplus-M phase-differencing sidescan sonar. These data were later re-processed in 2012. Within the acoustic-backscatter imagery, brighter tones indicate higher backscatter intensity, and darker tones indicate lower backscatter intensity. The intensity represents a complex interaction between the acoustic pulse and the seafloor, as well as characteristics within the shallow subsurface, providing a general indication of seafloor texture and sediment type. Backscatter intensity depends on the acoustic source level; the frequency used to image the seafloor; the grazing angle; the composition and character of the seafloor, including grain size, water content, bulk density, and seafloor roughness; and some biological cover. Harder and rougher bottom types such as rocky outcrops or coarse sediment typically return stronger intensities (high backscatter, lighter tones), whereas softer bottom types such as fine sediment return weaker intensities (low backscatter, darker tones). A map that show these data are published in Scientific Investigations Map 3319, "California State Waters Map Series--Offshore of Refugio Beach, California." This layer is part of USGS Data Series 781. In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP) to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats and geology within the 3-nautical-mile limit of California's State Waters. CSMP has divided coastal California into 110 map blocks, each to be published individually as United States Geological Survey Open-File Reports (OFRs) or Scientific Investigations Maps (SIMs) at a scale of 1:24,000. Maps display seafloor morphology and character, identify potential marine benthic habitats and illustrate both the seafloor geology and shallow (to about 100 m) subsurface geology. Data layers for bathymetry, bathymetric contours, acoustic backscatter, seafloor character, potential benthic habitat and offshore geology were created for each map block, as well as regional-scale data layers for sediment thickness, depth to transition, transgressive contours, isopachs, predicted distributions of benthic macro-invertebrates and visual observations of benthic habitat from video cruises over the entire state. This coverage can be used to to aid in assessments and mitigation of geologic hazards in the coastal region and to provide sufficient geologic information for land-use and land-management decisions both onshore and offshore. These data are intended for science researchers, students, policy makers, and the general public. This information is not intended for navigational purposes.The data can be used with geographic information systems (GIS) software to display geologic and oceanographic information. Dartnell, P., Phillips, E.L., Finlayson, D.P. (2015). Backscatter: Offshore of Refugio Beach, California, 2015. California State Waters Map Series Data Catalog: U.S. Geological Survey Data Series 781. Available at: http://purl.stanford.edu/pb804hy8483. Information for the related USGS Pacific Coastal and Marine Science Center data collection field activities, S-8-08-SC online at http://walrus.wr.usgs.gov/infobank/s/s808sc/html/s-8-08-sc.meta.html. This layer is presented in the WGS84 coordinate system for web display purposes. Downloadable data are provided in native coordinate system or projection.
-
Title: Backscatter A (8101): Drakes Bay and Vicinity, California, 2010
Contributors:- Raster data
- 2015
Summary: This layer is a georeferenced raster image containing acoustic-backscatter data for Drakes Bay and the surrounding vicinity in California. The map of the area was generated from data collected by California State University, Monterey Bay (CSUMB), and by Fugro Pelagos. Mapping was completed between 2007 and 2010, using a combination of 200-kHz and 400-kHz Reson 7125, and 244-kHz Reson 8101 multibeam echosounders, as well as 468-kHz SEA SWATHPlus interferometric system. These mapping missions combined to collect backscatter data (sheet 3) from about the 10-m isobath to beyond the 3-nautical-mile limit of Californiaís State Waters. Backscatter is a remote sensing activity by which electromagnetic energy is reflected back towards its source by terrain or particles. Within the acoustic-backscatter imagery, brighter tones indicate higher backscatter intensity, and darker tones indicate lower backscatter intensity. The intensity represents a complex interaction between the acoustic pulse and the seafloor, as well as characteristics within the shallow subsurface, providing a general indication of seafloor texture and composition. Backscatter intensity depends on the acoustic source level; the frequency used to image the seafloor; the grazing angle; the composition and character of the seafloor, including grain size, water content, bulk density, and seafloor roughness; and some biological cover. Harder and rougher bottom types such as rocky outcrops or coarse sediment typically return stronger intensities (high backscatter, lighter tones), whereas softer bottom types such as fine sediment return weaker intensities (low backscatter, darker tones). This layer is part of USGS Data Series 781. In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP) to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats and geology within the 3-nautical-mile limit of California's State Waters. CSMP has divided coastal California into 110 map blocks, each to be published individually as United States Geological Survey Open-File Reports (OFRs) or Scientific Investigations Maps (SIMs) at a scale of 1:24,000. Maps display seafloor morphology and character, identify potential marine benthic habitats and illustrate both the seafloor geology and shallow (to about 100 m) subsurface geology. Data layers for bathymetry, bathymetric contours, acoustic backscatter, seafloor character, potential benthic habitat and offshore geology were created for each map block, as well as regional-scale data layers for sediment thickness, depth to transition, transgressive contours, isopachs, predicted distributions of benthic macro-invertebrates and visual observations of benthic habitat from video cruises over the entire state. These data are intended for science researchers, students, policy makers, and the general public. This information is not intended for navigational purposes.The data can be used with geographic information systems (GIS) software to display geologic and oceanographic information. Dartnell, P. and Kvitek, R.G. (2014). Backscatter A (8101): Drakes Bay and Vicinity, California, 2010. California State Waters Map Series Data Catalog: U.S. Geological Survey Data Series 781. Available at: http://purl.stanford.edu/bh565zz1424. This layer is presented in the WGS84 coordinate system for web display purposes. Downloadable data are provided in native coordinate system or projection.
-
Title: Backscatter C (Swath): Offshore of Tomales Point, California, 2010
Contributors:- Raster data
- 2015
- Kvitek, Rikk G.
- Dartnell, Peter
- Golden, Nadine E.
- Pacific Coastal and Marine Science Center
- Seafloor Mapping Lab
Summary: This layer is a georeferenced raster image containing acoustic-backscatter data for the offshore area of Tomales Point, California. The acoustic-backscatter map of the area was generated from data collected by California State University, Monterey Bay (CSUMB), Fugro Pelagos and by the U.S. Geological Survey (USGS). Mapping was completed between 2004 and 2010, using a combination of 200-kHz and 400-kHz Reson 7125, and 244-kHz Reson 8101 multibeam echosounders, as well as 234-kHz and 468-kHz SEA SWATHPlus phase-differencing sidescan sonars. These mapping missions combined to collect backscatter data from about the 10-m isobath to beyond the 3-nautical-mile limit of California's State Waters. Within the acoustic-backscatter imagery, brighter tones indicate higher backscatter intensity, and darker tones indicate lower backscatter intensity. The intensity represents a complex interaction between the acoustic pulse and the seafloor, as well as characteristics within the shallow subsurface, providing a general indication of seafloor texture and composition. Backscatter intensity depends on the acoustic source level; the frequency used to image the seafloor; the grazing angle; the composition and character of the seafloor, including grain size, water content, bulk density, and seafloor roughness; and some biological cover. Harder and rougher bottom types such as rocky outcrops or coarse sediment typically return stronger intensities (high backscatter, lighter tones), whereas softer bottom types such as fine sediment return weaker intensities (low backscatter, darker tones). A map that shows these data is published in Open-File Report 2015-1088, "California State Waters Map Series--Offshore of Tomales Point, California." This layer is part of USGS Data Series 781. In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP) to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats and geology within the 3-nautical-mile limit of California's State Waters. CSMP has divided coastal California into 110 map blocks, each to be published individually as United States Geological Survey Open-File Reports (OFRs) or Scientific Investigations Maps (SIMs) at a scale of 1:24,000. Maps display seafloor morphology and character, identify potential marine benthic habitats and illustrate both the seafloor geology and shallow (to about 100 m) subsurface geology. Data layers for bathymetry, bathymetric contours, acoustic backscatter, seafloor character, potential benthic habitat and offshore geology were created for each map block, as well as regional-scale data layers for sediment thickness, depth to transition, transgressive contours, isopachs, predicted distributions of benthic macro-invertebrates and visual observations of benthic habitat from video cruises over the entire state. This coverage can be used to to aid in assessments and mitigation of geologic hazards in the coastal region and to provide sufficient geologic information for land-use and land-management decisions both onshore and offshore. These data are intended for science researchers, students, policy makers, and the general public. This information is not intended for navigational purposes.The data can be used with geographic information systems (GIS) software to display geologic and oceanographic information. Dartnell, P., Erdey, M.D., Kvitek, R.G., and Bretz, C.K. (2014). Backscatter C (Swath): Offshore of Tomales Point, California, 2010. California State Waters Map Series Data Catalog: U.S. Geological Survey Data Series 781. Available at: http://purl.stanford.edu/sn970qh2871. None This layer is presented in the WGS84 coordinate system for web display purposes. Downloadable data are provided in native coordinate system or projection.
-
Title: Contours: Offshore of Refugio Beach, California, 2015
Contributors:- Line data
- 2015
- Ritchie, Andrew C.
- Kvitek, Rikk G.
- Johnson, Samuel Y.
- Dartnell, Peter
- Golden, Nadine E.
- Seafloor Mapping Lab
- Pacific Coastal and Marine Science Center
Summary: This line shapefile contains bathymetric contours at 10 and 50 meter intervals for the offshore area of Refugio Beach, California. A map that show these data are published in Scientific Investigations Map 3319, "California State Waters Map Series--Offshore of Refugio Beach, California." This layer is part of USGS Data Series 781. In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP) to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats and geology within the 3-nautical-mile limit of California's State Waters. CSMP has divided coastal California into 110 map blocks, each to be published individually as United States Geological Survey Open-File Reports (OFRs) or Scientific Investigations Maps (SIMs) at a scale of 1:24,000. Maps display seafloor morphology and character, identify potential marine benthic habitats and illustrate both the seafloor geology and shallow (to about 100 m) subsurface geology. Data layers for bathymetry, bathymetric contours, acoustic backscatter, seafloor character, potential benthic habitat and offshore geology were created for each map block, as well as regional-scale data layers for sediment thickness, depth to transition, transgressive contours, isopachs, predicted distributions of benthic macro-invertebrates and visual observations of benthic habitat from video cruises over the entire state. This coverage can be used to to aid in assessments and mitigation of geologic hazards in the coastal region and to provide sufficient geologic information for land-use and land-management decisions both onshore and offshore. These data are intended for science researchers, students, policy makers, and the general public. This information is not intended for navigational purposes.The data can be used with geographic information systems (GIS) software to display geologic and oceanographic information. Ritchie, A.C., Dartnell, P., Kvitek, R.G., Johnson, S.Y. (2015). Contours: Offshore of Refugio Beach, California, 2015. California State Waters Map Series Data Catalog: U.S. Geological Survey Data Series 781. Available at: http://purl.stanford.edu/cj457gj7638. This layer is presented in the WGS84 coordinate system for web display purposes. Downloadable data are provided in native coordinate system or projection.
-
Title: Backscatter B (7125): Offshore of Tomales Point, California, 2010
Contributors:- Raster data
- 2015
- Kvitek, Rikk G.
- Dartnell, Peter
- Golden, Nadine E.
- Pacific Coastal and Marine Science Center
- Seafloor Mapping Lab
Summary: This layer is a georeferenced raster image containing acoustic-backscatter data for the offshore area of Tomales Point, California. The acoustic-backscatter map of the area was generated from data collected by California State University, Monterey Bay (CSUMB), Fugro Pelagos and by the U.S. Geological Survey (USGS). Mapping was completed between 2004 and 2010, using a combination of 200-kHz and 400-kHz Reson 7125, and 244-kHz Reson 8101 multibeam echosounders, as well as 234-kHz and 468-kHz SEA SWATHPlus phase-differencing sidescan sonars. These mapping missions combined to collect backscatter data from about the 10-m isobath to beyond the 3-nautical-mile limit of California's State Waters. Within the acoustic-backscatter imagery, brighter tones indicate higher backscatter intensity, and darker tones indicate lower backscatter intensity. The intensity represents a complex interaction between the acoustic pulse and the seafloor, as well as characteristics within the shallow subsurface, providing a general indication of seafloor texture and composition. Backscatter intensity depends on the acoustic source level; the frequency used to image the seafloor; the grazing angle; the composition and character of the seafloor, including grain size, water content, bulk density, and seafloor roughness; and some biological cover. Harder and rougher bottom types such as rocky outcrops or coarse sediment typically return stronger intensities (high backscatter, lighter tones), whereas softer bottom types such as fine sediment return weaker intensities (low backscatter, darker tones). A map that shows these data is published in Open-File Report 2015-1088, "California State Waters Map Series--Offshore of Tomales Point, California." This layer is part of USGS Data Series 781. In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP) to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats and geology within the 3-nautical-mile limit of California's State Waters. CSMP has divided coastal California into 110 map blocks, each to be published individually as United States Geological Survey Open-File Reports (OFRs) or Scientific Investigations Maps (SIMs) at a scale of 1:24,000. Maps display seafloor morphology and character, identify potential marine benthic habitats and illustrate both the seafloor geology and shallow (to about 100 m) subsurface geology. Data layers for bathymetry, bathymetric contours, acoustic backscatter, seafloor character, potential benthic habitat and offshore geology were created for each map block, as well as regional-scale data layers for sediment thickness, depth to transition, transgressive contours, isopachs, predicted distributions of benthic macro-invertebrates and visual observations of benthic habitat from video cruises over the entire state. This coverage can be used to to aid in assessments and mitigation of geologic hazards in the coastal region and to provide sufficient geologic information for land-use and land-management decisions both onshore and offshore. These data are intended for science researchers, students, policy makers, and the general public. This information is not intended for navigational purposes.The data can be used with geographic information systems (GIS) software to display geologic and oceanographic information. Dartnell, P., Erdey, M.D., Kvitek, R.G., and Bretz, C.K. (2014). Backscatter B (7125): Offshore of Tomales Point, California, 2010. California State Waters Map Series Data Catalog: U.S. Geological Survey Data Series 781. Available at: http://purl.stanford.edu/sb976wc2810. None This layer is presented in the WGS84 coordinate system for web display purposes. Downloadable data are provided in native coordinate system or projection.
-
Title: Backscatter A (8101): Offshore of Tomales Point, California, 2010
Contributors:- Raster data
- 2015
- Kvitek, Rikk G.
- Dartnell, Peter
- Golden, Nadine E.
- Seafloor Mapping Lab
- Pacific Coastal and Marine Science Center
Summary: This layer is a georeferenced raster image containing acoustic-backscatter data for the offshore area of Tomales Point, California. The acoustic-backscatter map of the area was generated from data collected by California State University, Monterey Bay (CSUMB), Fugro Pelagos and by the U.S. Geological Survey (USGS). Mapping was completed between 2004 and 2010, using a combination of 200-kHz and 400-kHz Reson 7125, and 244-kHz Reson 8101 multibeam echosounders, as well as 234-kHz and 468-kHz SEA SWATHPlus phase-differencing sidescan sonars. These mapping missions combined to collect backscatter data from about the 10-m isobath to beyond the 3-nautical-mile limit of California's State Waters. Within the acoustic-backscatter imagery, brighter tones indicate higher backscatter intensity, and darker tones indicate lower backscatter intensity. The intensity represents a complex interaction between the acoustic pulse and the seafloor, as well as characteristics within the shallow subsurface, providing a general indication of seafloor texture and composition. Backscatter intensity depends on the acoustic source level; the frequency used to image the seafloor; the grazing angle; the composition and character of the seafloor, including grain size, water content, bulk density, and seafloor roughness; and some biological cover. Harder and rougher bottom types such as rocky outcrops or coarse sediment typically return stronger intensities (high backscatter, lighter tones), whereas softer bottom types such as fine sediment return weaker intensities (low backscatter, darker tones). A map that shows these data is published in Open-File Report 2015-1088, "California State Waters Map Series--Offshore of Tomales Point, California." This layer is part of USGS Data Series 781. In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP) to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats and geology within the 3-nautical-mile limit of California's State Waters. CSMP has divided coastal California into 110 map blocks, each to be published individually as United States Geological Survey Open-File Reports (OFRs) or Scientific Investigations Maps (SIMs) at a scale of 1:24,000. Maps display seafloor morphology and character, identify potential marine benthic habitats and illustrate both the seafloor geology and shallow (to about 100 m) subsurface geology. Data layers for bathymetry, bathymetric contours, acoustic backscatter, seafloor character, potential benthic habitat and offshore geology were created for each map block, as well as regional-scale data layers for sediment thickness, depth to transition, transgressive contours, isopachs, predicted distributions of benthic macro-invertebrates and visual observations of benthic habitat from video cruises over the entire state. This coverage can be used to to aid in assessments and mitigation of geologic hazards in the coastal region and to provide sufficient geologic information for land-use and land-management decisions both onshore and offshore. These data are intended for science researchers, students, policy makers, and the general public. This information is not intended for navigational purposes.The data can be used with geographic information systems (GIS) software to display geologic and oceanographic information. Dartnell, P., Erdey, M.D., Kvitek, R.G., and Bretz, C.K. (2014). Backscatter A (8101): Offshore of Tomales Point, California, 2010. California State Waters Map Series Data Catalog: U.S. Geological Survey Data Series 781. Available at: http://purl.stanford.edu/tb879rs4686. None This layer is presented in the WGS84 coordinate system for web display purposes. Downloadable data are provided in native coordinate system or projection.
-
Title: Geology: Offshore of Tomales Point, California, 2010
Contributors:- Polygon data
- 2015
- Johnson, Samuel Y.
- Hartwell, Stephen R.
- Manson, Michael W.
- Golden, Nadine E.
- Pacific Coastal and Marine Science Center
Summary: This polygon shapefile depicts geologic features within the offshore area of Tomales Point, California. The morphology and the geology of the offshore part of the Offshore of Tomales Point map area result from the interplay between tectonics, sea-level rise, local sedimentary processes, and oceanography. The map area is cut by the northwest-trending San Andreas Fault, the right-lateral transform boundary between the North American and Pacific tectonic plates. The San Andreas strikes through Tomales Bay, the northern part of a linear valley that extends from Bolinas through Olema Valley to Bodega Bay, separating mainland California from the Point Reyes Peninsula. Onshore investigations indicate that this section of the San Andreas Fault has an estimated slip rate of about 17 to 25 mm/yr (Bryant and Lundberg, 2002; Grove and Niemi, 2005). The devastating Great 1906 California earthquake (M 7.8) is thought to have nucleated on the San Andreas Fault about 50 kilometers south of this map area offshore of San Francisco (e.g., Bolt, 1968; Lomax, 2005), with the rupture extending northward through the Offshore of Tomales Point map area to the south flank of Cape Mendocino (Lawson, 1908; Brown and Wolfe, 1972). The Point Reyes Peninsula is bounded to the south and west in the offshore by the north- and east-dipping Point Reyes Thrust Fault (McCulloch, 1987; Heck and others, 1990), which lies about 20 km west of Tomales Point. Granitic basement rocks are offset about 1.4 km on this thrust fault offshore of Point Reyes (McCulloch, 1987), and this uplift combined with west-side-up offset on the San Andreas Fault (Grove and Niemi, 2005) resulted in uplift of the Point Reyes Peninsula, including Tomales Point and the adjacent continental shelf. Grove and others (2010) reported uplift rates of as much as 1 mm/yr for the south flank of the Point Reyes Peninsula based on marine terraces, but reported no datable terrace surfaces that could constrain uplift for the flight of 4-5 terraces exposed farther north along Tomales Point. Because of this Quaternary uplift and relative lack of sediment supply from coastal watersheds, there is extensive rugged, rocky seafloor beneath the continental shelf in the Offshore of Tomales Point map area. Granitic rocks (unit Kg) on the seafloor are mapped on the basis of massive character, roughness, extensive fractures, and high backscatter (see Backscattter A to D--Offshore of Tomales Point, California, DS 781, for more information). Neogene sedimentary rocks (units Tl and Tu) commonly form distinctive "ribs," created by differential seafloor erosion of dipping beds of variable resistance. The more massive offshore outcrops of unit Tu in the southern part of the map area are inferred to represent more uniform lithologies. Slopes on the granitic seafloor (generally 1 to 1.3 degrees) are greater than those over sedimentary rock (generally about 0.5 to 0.6 degrees). Sediment-covered areas occur in gently sloping (less than about 0.6 degrees) mid-shelf environments west and north of Tomales Point, and at the mouth of Tomales Bay. Sediment supply is local, limited to erosion from local coastal bluffs and dunes, small coastal watersheds, and sediment flux out of the mouth of Tomales Bay. Shelf morphology and evolution largely reflects eustacy; sea level has risen about 125 to 130 m over about the last 21,000 years (for example, Lambeck and Chappell, 2001; Peltier and Fairbanks, 2005), leading to broadening of the continental shelf, progressive eastward migration of the shoreline and wave-cut platform, and associated transgressive erosion and deposition. Given present exposure to high wave energy, modern nearshore to mid-shelf sediments are mostly sand (unit Qms) and a mix of sand, gravel, and cobbles (units Qmsc and Qmsd). These sediments are distributed between rocky outcrops at water depths of as much as 65 m (see below). The more coarse-grained sands and gravels (units Qmsc and Qmsd) are primarily recognized on the basis of bathymetry and high backscatter. Unit Qmsd forms erosional lags in scoured depressions that are bounded by relatively sharp contacts with bedrock or sharp to diffuse contacts with units Qms and Qmsc. These scoured depressions are typically a few tens of centimeters deep and range in size from a few 10's of sq m to more than one sq km. Similar unit Qmsd scour depressions are common along this stretch of the California coast (see, for example, Cacchione and others, 1984; Hallenbeck and others, 2012) where surficial offshore sandy sediment is relatively thin (thus unable to fill the depressions) due to both lack of sediment supply and to erosion and transport of sediment during large northwest winter swells. Such features have been referred to as rippled-scour depressions (see, for example, Cacchione and others, 1984) or sorted bedforms (see, for example, Goff and others, 2005; Trembanis and Hume, 2011). Although the general areas in which both unit Qmsd scour depressions and surrounding mobile sand sheets occur are not likely to change substantially, the boundaries of the individual Qmsd depressions are likely ephemeral, changing seasonally and during significant storm events. Unit Qmsf consists primarily of mud and muddy sand and is commonly extensively bioturbated. The location of the inboard contact at water depths of about 65 m is based on meager sediment sampling and photographic data and the inference that if must lie offshore of the outer boundary of coarse-grained units Qmsd and Qmsc. This is notably deeper than the inner contact of unit Qmsf offshore of the nearby Russian River (about 50 m; Klise, 1983) which could may reflect both increased wave energy and significantly decreased supply of muddy sediment. There are two areas of high-backscatter, rough seafloor at water depths of 65 to 70 m west of northern Tomales Point. These areas are notable in that each includes several small (less than about 20,000 sq m), randomly distributed to northwest-trending, irregular "mounds," with as much as 1 m of positive relief above the seafloor (unit Qsr). Seismic-reflection data (see field activity S-15-10-NC) reveal this lumpy material rests on several meters of latest Pleistoce to Holocene sediment and is thus not bedrock outcrop. Rather, it seems likely that this material is marine debris, possibly derived from one (or more) of the more than 60 shipwrecks that have occurred offshore of the Point Reyes Peninsula between 1849 and 1940 (National Park Service, 2012). It is also conceivable that this lumpy terrane consists of biological "hardgrounds" Units Qsw, Qstb, Qdtb, and Qsdtb comprise sediments in Tomales Bay. Anima and others (2008) conducted a high-resolution bathymetric survey of Tomales Bay and noted that strong tidal currents at the mouth of the bay had created a large field of sandwaves, dunes, and flats (unit Qsw). Unit Qkdtb is a small subaqueous sandy delta deposited at the mouth of Keys Creek, the largest coastal watershed draining into this northern part of Tomales Bay. Unit Qstb occurs south of units Qsw and Qdtb, and comprises largely flat seafloor underlain by mixed sand and silt. Unit Qdtb consists of depressions within the sedimentary fill of Tomales Bay. These depressions commonly occur directly offshore of coastal promontories, cover as much as 74,000 sq m, and are as deep as 9 m. Map unit polygons were digitized over underlying 2-meter base layers developed from multibeam bathymetry and backscatter data (see Bathymetry--Offshore of Tomales Point, California and Backscattter A to D--Offshore of Tomales Point, California, DS 781). The bathymetry and backscatter data were collected between 2006 and 2010. A map that shows these data is published in Open-File Report 2015-1088, "California State Waters Map Series--Offshore of Tomales Point, California." This layer is part of USGS Data Series 781. In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP) to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats and geology within the 3-nautical-mile limit of California's State Waters. CSMP has divided coastal California into 110 map blocks, each to be published individually as United States Geological Survey Open-File Reports (OFRs) or Scientific Investigations Maps (SIMs) at a scale of 1:24,000. Maps display seafloor morphology and character, identify potential marine benthic habitats and illustrate both the seafloor geology and shallow (to about 100 m) subsurface geology. Data layers for bathymetry, bathymetric contours, acoustic backscatter, seafloor character, potential benthic habitat and offshore geology were created for each map block, as well as regional-scale data layers for sediment thickness, depth to transition, transgressive contours, isopachs, predicted distributions of benthic macro-invertebrates and visual observations of benthic habitat from video cruises over the entire state. This coverage can be used to to aid in assessments and mitigation of geologic hazards in the coastal region and to provide sufficient geologic information for land-use and land-management decisions both onshore and offshore. These data are intended for science researchers, students, policy makers, and the general public. This information is not intended for navigational purposes.The data can be used with geographic information systems (GIS) software to display geologic and oceanographic information. Hartwell, S.R., Johnson, S.Y., and Manson, M.W. (2014). Geology: Offshore of Tomales Point, California, 2010. California State Waters Map Series Data Catalog: U.S. Geological Survey Data Series 781. Available at: http://purl.stanford.edu/zg934rd8487. Map political location: San Mateo County, California Compilation scale: 1:24,000 Base maps used are hillshades generated from IfSAR, LiDAR, and multibeam mapping both onshore and offshore (see Bathymetry Hillshade--Offshore of Tomales Point, California, DS 781, for more information). References Cited Anima, R. A., Chin, J.L., Finlayson, D.P., McGann, M.L., and Wong, F.L., 2008, Interferometric sidescan bathymetry, sediment and foraminiferal analyses; a new look at Tomales Bay, California: U.S. Geological Survey Open-File Report 2008 - 1237, 33 p. Brown, R.D., Jr., and Wolfe, E.W., 1972, Map showing recently active breaks along the San Andreas Fault between Point Delgada and Bolinas Bay, California: U.S. Geological Survey Miscellaneous Investigations Map I-692, scale 1:24,000. Bryant, W.A., and Lundberg, M.M., compilers, 2002, Fault number 1b, San Andreas fault zone, North Coast section, in Quaternary fault and fold database of the United States: U.S. Geological Survey website, accessed April 4, 2013 at http://earthquakes.usgs.gov/hazards/qfaults. Cacchione, D.A., Drake, D.E., Grant, W.D., and Tate, G.B., 1984, Rippled scour depressions of the inner continental shelf off central California: Journal of Sedimentary Petrology, v. 54, p. 1,280-1,291. Grove, K., and Niemi, T.M., 2005, Late Quaternary deformation and slip rates in the northern San Andreas fault zone at Olema Valley, Marin County, California: Tectonophysics, v. 401, p. 231-250. Grove, K, Sklar, L.S., Scherer, A.M., Lee, G., and Davis, J., 2010, Accelerating and spatially-varying crustal uplift and its geomorphic expression, San Andreas fault zone north of San Francisco, California: Tectonophysics, v. 495, p. 256-268. Klise, D.H., 1984, Modern sedimentation on the California continental margin adjacent to the Russian River: M.S. thesis, San Jose State University, 120 p. Hallenbeck, T.R., Kvitek, R.G., and Lindholm, J., 2012, Rippled scour depressions add ecologically significant heterogeneity to soft-bottom habitats on the continental shelf: Marine Ecology Progress Series, v. 468, p. 119-133. Lambeck, K., and Chappell, J., 2001, Sea level change through the last glacial cycle: Science, v. 292, p. 679-686, doi: 10.1126/science.1059549. Lawson, A.C., ed., 1908, The California earthquake of April 18, 1906, Report of the State Earthquake Investigation Commission: Carnegie Institution of Washington Publication 87, v. 1, 1451 p. and atlas. Lomax, A., 2005, A reanalysis of the hypocentral location and related observations for the Great 1906 California earthquake: Bulletin of the Seismological Society of America, v. 95, p. 861-877. McCulloch, D.S., 1987, Regional geology and hydrocarbon potential of offshore central California, in Scholl, D.W., Grantz, A., and Vedder, J.G., eds., Geology and Resource Potential of the Continental Margin of Western North America and Adjacent Oceans -- Beaufort Sea to Baja California: Houston, Texas, Circum-Pacific Council for Energy and Mineral Resources, Earth Science Series, v. 6., p. 353-401. National Park Service, 2012, Shipwrecks at Point Reyes, accessed May 1, 2013 at: http://www.nps.gov/pore/historyculture/upload/map_shipwrecks.pdf This layer is presented in the WGS84 coordinate system for web display purposes. Downloadable data are provided in native coordinate system or projection.
-
Title: Bathymetry: Offshore of Tomales Point, California, 2010
Contributors:- Raster data
- 2015
- Kvitek, Rikk G.
- Dartnell, Peter
- Golden, Nadine E.
- Pacific Coastal and Marine Science Center
- Seafloor Mapping Lab
Summary: This layer is a georeferenced raster image containing bathymetric data for the offshore area of Tomales Point, California. The bathymetric and shaded relief maps of the area were generated from data collected by California State University, Monterey Bay (CSUMB) , Fugro Pelagos and by the U.S. Geological Survey (USGS). Mapping was completed between 2004 and 2010, using a combination of 200-kHz and 400-kHz Reson 7125, and 244-kHz Reson 8101 multibeam echosounders, as well as 234-kHz and 468-kHz SEA SWATHPlus phase-differencing sidescan sonars. These mapping missions combined to collect bathymetry from about the 10-m isobath to beyond the 3-nautical-mile limit of California's State Waters. NOTE: the horizontal datum of the bathymetry data (NAD83) differs from the horizontal datum of other layers in this data series (WGS84). Some bathymetry grids within this map were projected horizontally from WGS84 to NAD83 using ESRI tools to be more consistent with the vertical reference of the North American Vertical Datum of 1988 (NAVD88). A map that shows these data is published in Open-File Report 2015-1088, "California State Waters Map Series--Offshore of Tomales Point, California." This layer is part of USGS Data Series 781. In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP) to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats and geology within the 3-nautical-mile limit of California's State Waters. CSMP has divided coastal California into 110 map blocks, each to be published individually as United States Geological Survey Open-File Reports (OFRs) or Scientific Investigations Maps (SIMs) at a scale of 1:24,000. Maps display seafloor morphology and character, identify potential marine benthic habitats and illustrate both the seafloor geology and shallow (to about 100 m) subsurface geology. Data layers for bathymetry, bathymetric contours, acoustic backscatter, seafloor character, potential benthic habitat and offshore geology were created for each map block, as well as regional-scale data layers for sediment thickness, depth to transition, transgressive contours, isopachs, predicted distributions of benthic macro-invertebrates and visual observations of benthic habitat from video cruises over the entire state. This coverage can be used to to aid in assessments and mitigation of geologic hazards in the coastal region and to provide sufficient geologic information for land-use and land-management decisions both onshore and offshore. These data are intended for science researchers, students, policy makers, and the general public. This information is not intended for navigational purposes. Dartnell, P., Kvitek, R.G., and Bretz, C.K. (2014). Bathymetry: Offshore of Tomales Point, California, 2010. California State Waters Map Series Data Catalog: U.S. Geological Survey Data Series 781. Available at: http://purl.stanford.edu/sp951ck0438. None This layer is presented in the WGS84 coordinate system for web display purposes. Downloadable data are provided in native coordinate system or projection.