Search for geospatial/GIS data

Find GIS data held at MIT and other institutions

1,022 results returned

  1. Title: Dardanelles Strait, 1876 (Raster Image)

    Contributors:

    Summary: This layer is a georeferenced raster image of the historic paper map entitled: Mediterranean, the Dardanelles (ancient Hellespont). It was published by: Published at the Admiralty ... under the superintendence of Rear Admiral G.H. Richards, C.B., F.R.S., Hydrographer in 1876. Scale approximately 1:78,000. Map in English. The image inside the map neatline is georeferenced to the surface of the earth and fit to the WGS 1984 UTM Zone 35N (EPSG: 32635) coordinate system. All map features and collar and inset information are shown as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This layer is part of a selection of digitally scanned and georeferenced historic maps from the Harvard Map Collection. These maps typically portray both natural and manmade features. The selection represents a range of geographies, originators, ground condition dates, scales, and map purposes.

  2. Title: Habitat: Offshore of Refugio Beach, California, 2015

    Contributors:

    Summary: This polygon shapefile contains potential benthic habitats for the offshore area of Refugio Beach, California. A map that show these data are published in Scientific Investigations Map 3319, "California State Waters Map Series--Offshore of Refugio Beach, California." This layer is part of USGS Data Series 781. In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP) to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats and geology within the 3-nautical-mile limit of California's State Waters. CSMP has divided coastal California into 110 map blocks, each to be published individually as United States Geological Survey Open-File Reports (OFRs) or Scientific Investigations Maps (SIMs) at a scale of 1:24,000. Maps display seafloor morphology and character, identify potential marine benthic habitats and illustrate both the seafloor geology and shallow (to about 100 m) subsurface geology. Data layers for bathymetry, bathymetric contours, acoustic backscatter, seafloor character, potential benthic habitat and offshore geology were created for each map block, as well as regional-scale data layers for sediment thickness, depth to transition, transgressive contours, isopachs, predicted distributions of benthic macro-invertebrates and visual observations of benthic habitat from video cruises over the entire state. The purpose of this work is to construct nine potential marine benthic habitat maps characterized after Greene et al. (1999, 2007). These habitat maps are constructed in the same manner as the maps completed for phase I of the California Seafloor Mapping Program (CSMP). These data are intended for science researchers, students, policy makers, and the general public. This information is not intended for navigational purposes.The data can be used with geographic information systems (GIS) software to display geologic and oceanographic information. Additionally, this coverage can provide a geologic map for the public and geoscience community to aid in assessments and mitigation of geologic hazards in the coastal region and sufficient geologic information for land-use and land-management decisions both onshore and offshore. This information is not intended for navigational purposes. Endris, C.A., Greene, H.G. (2015). Habitat: Offshore of Refugio Beach, California, 2015. California State Waters Map Series Data Catalog: U.S. Geological Survey Data Series 781. Available at: http://purl.stanford.edu/nh727vv9654. Data used for the creation of the potential marine benthic habitat interpretation consists of multibeam bathymetry, acoustic backscatter, sediment samples, camera-sled imagery, and existing geologic and seafloor interpretive maps. All data were compiled and displayed for interpretation using ESRI ArcGIS software, ArcMap v.9.3. The process utilizes editing a shapefile within ArcMap, beginning with the construction of polygons to delineate benthic features. A feature is an area with common characteristics which can be characterized as a single potential habitat type. The boundaries and extents of these features were determined from the bathymetric data. Generally, interpretations were made at scales ranging between 1:2,000 and 1:5,000. The USGS kindly provided the Center for Habitat Studies with a geodatabase consisting of feature datasets delineating geologic features and attributes for the Santa Barbara Channel. Some of the delineated polygons were preserved as part of the potential marine benthic habitat characterization. However, the Greene et. al (2007) code was used in attributing the dataset and additional polygons were added using the methods outlined below. High resolution multibeam sonar data in the form of bathymetric depth grids (seafloor digital elevation models, referred to as the "bathymetry") were the primary data used in the interpretation of potential habitat types. Shaded relief imagery ("hillshade") allows for visualization of the terrain and interpretation of submarine landforms. Based on these hillshades, areas of rock were identified by their often sharply defined edges and high relative relief; these may be contiguous outcrops, isolated portions of outcrop protruding through sediment cover (pinnacles), or isolated boulders. Although these types of features can be confidently characterized as exposed rock, it is not uncommon to find areas within or around the rocky feature that appear to be covered by a thin veneer of sediment. These areas are identified as "mixed" induration, containing both rock and sediment. Broad areas of the seafloor lacking sharp and angular characteristics are considered to be sediment. Sedimentary features may contain erosional or depositional characteristics recognizable in the bathymetry, such as dynamic bedforms (dunes or sand waves). General morphologic features such as scours, mounds, and depressions were also identified using the hillshade relief imagery. The combination of acoustic backscatter data and "groundtruthed" sediment samples were used to delineate seafloor sediment types within areas identified as "soft (s)" induration. Initially, groundtruth data, in the form of grab sample descriptions and average grain size measurements, were categorized into four grain-size categories: mud (m), muddy sand (s/m), sand (s), and sandy gravel (s/g). Backscatter data was then classified into four intensity categories (low, med, high, very high) that are assumed to correspond to relative grain sizes. The aim was to develop an intensity classification of the seafloor that correlated with the data collected from the sediment samples. Thus, the combination of remotely observed data (acoustic backscatter) and directly observed data (sediment grab samples) translates to higher confidence in our ability to interpret broad areas of the seafloor. Nonetheless, we caution against using our sediment type interpretations as anything more than "best-guess" due to the following issues: characterization of contiguous sediment bodies is a difficult procedure since even small areas can exhibit a wide spectrum of backscatter intensity values that lack distinct boundaries; backscatter intensity can be affected by depth, vegetation, water column conditions, and seafloor relief; and directly observed sediment data, in the form of sediment samples, represents a very small area relative to remotely observed data, requiring broad areas of interpolation. Please refer to Greene et al. (2007) for more information regarding the Benthic Marine Potential Habitat Classification Scheme and the codes used to represent various seafloor features. References Cited: Greene, H.G., Yoklavich, M.M., Starr, R.M., O'Connell, V.M., Wakefield, W.W., Sullivan, D.E., McRea, J.E., Jr., and Cailliet, G.M., 1999, A classification scheme for deep seafloor habitats: Oceanologica Acta, v. 22, no. 6, p. 663-678. Greene, H.G., Bizzarro, J.J., O'Connell, V.M., and Brylinsky, C.K., 2007, Construction of digital potential marine benthic habitat maps using a coded classification scheme and its application, in Todd, B.J., and Greene, H.G., eds., Mapping the seafloor for habitat characterization: Geological Association of Canada Special Paper 47, p. 141-155. This layer is presented in the WGS84 coordinate system for web display purposes. Downloadable data are provided in native coordinate system or projection.

  3. Title: Habitat: Offshore of Tomales Point, California, 2014

    Contributors:

    Summary: This polygon shapefile depicts potential benthic habitats within the offshore area of Tomales Point, California. Using multibeam echosounder (MBES) bathymetry and backscatter data, potential marine benthic habitat maps were constructed. The habitats were based on substrate types and documented or "ground truthed" using underwater video images and seafloor samples obtained by the USGS. These maps display various habitat types that range from flat, soft, unconsolidated sediment-covered seafloor to hard, deformed (folded), or highly rugose and differentially eroded bedrock exposures. Rugged, high-relief, rocky outcrops that have been eroded to form ledges and small caves are ideal habitat for rockfish (Sebastes spp.) and other bottom fish such as lingcod (Ophiodon elongatus). Please refer to Greene and others (2007) for more information regarding the Benthic Marine Potential Habitat Classification Scheme and the codes used to represent various seafloor features. A map that shows these data is published in Open-File Report 2015-1088, "California State Waters Map Series--Offshore of Tomales Point, California." This layer is part of USGS Data Series 781. In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP) to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats and geology within the 3-nautical-mile limit of California's State Waters. CSMP has divided coastal California into 110 map blocks, each to be published individually as United States Geological Survey Open-File Reports (OFRs) or Scientific Investigations Maps (SIMs) at a scale of 1:24,000. Maps display seafloor morphology and character, identify potential marine benthic habitats and illustrate both the seafloor geology and shallow (to about 100 m) subsurface geology. Data layers for bathymetry, bathymetric contours, acoustic backscatter, seafloor character, potential benthic habitat and offshore geology were created for each map block, as well as regional-scale data layers for sediment thickness, depth to transition, transgressive contours, isopachs, predicted distributions of benthic macro-invertebrates and visual observations of benthic habitat from video cruises over the entire state. The purpose of this work is to construct nine potential marine benthic habitat maps characterized after Greene et al. (1999, 2007). These habitat maps are constructed in the same manner as the maps completed for phase I of the California Seafloor Mapping Program (CSMP). These data are intended for science researchers, students, policy makers, and the general public. This information is not intended for navigational purposes.The data can be used with geographic information systems (GIS) software to display geologic and oceanographic information. Additionally, this coverage can provide a geologic map for the public and geoscience community to aid in assessments and mitigation of geologic hazards in the coastal region and sufficient geologic information for land-use and land-management decisions both onshore and offshore. This information is not intended for navigational purposes. Dieter, B.E., Greene, H.G., and Endris, C.A. (2014). Habitat: Offshore of Tomales Point, California, 2014. California State Waters Map Series Data Catalog: U.S. Geological Survey Data Series 781. Available at: http://purl.stanford.edu/vt919yw7254. Interpretation and polygon delineation of habitats performed at scales from 1:2000 to 1:5000. References Cited: Greene, H.G., Bizzarro, J.J., O'Connell, V.M., and Brylinsky, C.K., 2007, Construction of digital potential marine benthic habitat maps using a coded classification scheme and its application, in Todd, B.J., and Greene, H.G., eds., Mapping the seafloor for habitat characterization: Geological Association of Canada Special Paper 47, p. 141-155. This layer is presented in the WGS84 coordinate system for web display purposes. Downloadable data are provided in native coordinate system or projection.

  4. Title: Folds: Offshore of Point Reyes, California, 2009

    Contributors:

    Summary: This line shapefile contains geologic folds within the offshore region of Point Reyes map area, California. Folds in the Point Reyes map area are identified on seismic-reflection data based on abrupt truncation or warping of reflections and (or) juxtaposition of reflection panels with different seismic parameters such as reflection presence, amplitude, frequency, geometry, continuity, and vertical sequence. The Point Reyes Fault Zone runs through the map area and is an offshore curvilinear reverse fault zone with predominantly north-side-up motion (Hoskins and Griffiths, 1971; McCulloch, 1987; Heck and others, 1990; Stozek, 2012) that likely connects with the western San Gregorio fault further to the south (Ryan and others, 2008), making it part of the San Andreas Fault System. The Point Reyes Fault Zone is characterized by a 5 to 11 km-wide zone of deformation in the shallow subsurface that is associated with two main fault structures, the Point Reyes Fault and the western Point Reyes Fault. Near the Point Reyes headland, vertical displacement of granitic basement across the Point Reyes Fault is at least 1.4 km (McCulloch, 1987). Offshore Double Point, vertical displacement on the Point Reyes Fault is difficult to assess because subsurface age constraints from nearby wells are lacking, and there are few offset horizons across the fault imaged on available seismic data. However, warping and folding of Neogene strata are clearly visible on high-resolution seismic data. The western Point Reyes Fault is defined by a broad anticlinal structure visible in both industry and high-resolution seismic datasets that exhibits that same sense of vergence (north-side-up) as the Point Reyes Fault. Folds were primarily mapped by interpretation of seismic reflection profile data (see field activity S-8-09-NC). The seismic reflection profiles were collected in 2009. The map that show these data are published in Open-File Report 2015-1114, "California State Waters Map Series—Offshore of Point Reyes, California." This layer is part of USGS Data Series 781. In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP) to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats and geology within the 3-nautical-mile limit of California's State Waters. CSMP has divided coastal California into 110 map blocks, each to be published individually as United States Geological Survey Open-File Reports (OFRs) or Scientific Investigations Maps (SIMs) at a scale of 1:24,000. Maps display seafloor morphology and character, identify potential marine benthic habitats and illustrate both the seafloor geology and shallow (to about 100 m) subsurface geology. Data layers for bathymetry, bathymetric contours, acoustic backscatter, seafloor character, potential benthic habitat and offshore geology were created for each map block, as well as regional-scale data layers for sediment thickness, depth to transition, transgressive contours, isopachs, predicted distributions of benthic macro-invertebrates and visual observations of benthic habitat from video cruises over the entire state. This coverage can be used to to aid in assessments and mitigation of geologic hazards in the coastal region and to provide sufficient geologic information for land-use and land-management decisions both onshore and offshore. These data are intended for science researchers, students, policy makers, and the general public. This information is not intended for navigational purposes.The data can be used with geographic information systems (GIS) software to display geologic and oceanographic information. Watt, J.T., Manson, M.W., and Greene, H.G. (2014). Folds: Offshore of Point Reyes, California, 2009. California State Waters Map Series Data Catalog: U.S. Geological Survey Data Series 781. Available at: http://purl.stanford.edu/mr840rd2952. Map political location: Marin County, California Compilation scale: 1:24,000 Base maps used are hillshades generated from IfSAR, LiDAR, and multibeam mapping both onshore and offshore see see Bathymetry--Offshore Point Reyes, California, DS 781 for more information, California, DS 781, for more information). References Cited Heck, R.G., Edwards, E.B., Kronen, J.D., Jr., and Willingham, C.R., 1990, Petroleum potential of the offshore outer Santa Cruz and Bodega basins, California, in Garrison, R.E., Greene, H.G., Hicks, K.R., Weber, G.E., and Wright, T.L., eds. Geology and tectonics of the central California coastal region, San Francisco to Monterey: Pacific Section, American Association of Petroleum Geologists Bulletin GB67, p. 143-164. Hoskins E.G., Griffiths, J.R., 1971, Hydrocarbon potential of northern and central California offshore: American Association of Petroleum Geologists Memoir 15, p. 212-228. McCulloch, D.S., 1987, Regional geology and hydrocarbon potential of offshore central California, in Scholl, D.W., Grantz, A., and Vedder, J.G., eds., Geology and Resource Potential of the Continental Margin of Western North America and Adjacent Oceans Beaufort Sea to Baja California: Houston, Texas, Circum-Pacific Council for Energy and Mineral Resources, Earth Science Series, v. 6., p. 353-401. Ryan, H.F., Parsons, T., and Sliter, R.W., 2008, Vertical tectonic deformation associated with the San Andreas Fault offshore of San Francisco, California: Tectonophysics, v. 475, p. 209-223. Stozek, B.A., 2012, Geophysical evidence for Quaternary deformation within the offshore San Andreas fault system, northern California: Masters Thesis, San Francisco State University, 141 p. This layer is presented in the WGS84 coordinate system for web display purposes. Downloadable data are provided in native coordinate system or projection.

  5. Title: Faults: Offshore of Bolinas, California, 2009

    Contributors:

    Summary: This line shapefile contains fault lines for the offshore area of Bolinas, California. The map area straddles the right-lateral transform boundary between the North American and Pacific plates and is cut by several active faults that cumulatively form a distributed shear zone, including the San Andreas Fault, the eastern strand of the San Gregorio Fault, the Golden Gate Fault, and the Potato Patch Fault (Bruns and others, 2002; Ryan and others, 2008). These faults are covered by sediment (mostly unit Qms) with no seafloor expression, and are mapped using seismic-reflection data (see field activities S-8-09-NC and L-1-06-SF). The San Andreas Fault is the primary plate-boundary structure and extends northwest through the southern part of the map area before passing onshore at Bolinas Lagoon. This section of the San Andreas Fault has an estimated slip rate of 17 to 24 mm/yr (U.S. Geological Survey, 2010), and the devastating Great 1906 California earthquake (M 7.8) is thought to have nucleated on the San Andreas a few kilometers south of this map area offshore of San Francisco (e.g., Bolt, 1968; Lomax, 2005). The San Andreas Fault forms the boundary between two distinct basement terranes, Upper Jurassic and Lower Cretaceous melange and graywacke sandstone of the Franciscan Complex to the east, and Late Cretaceous granitic and older metamorphic rocks of the Salinian block to the west. Franciscan Complex rocks (unit KJf, undivided) form seafloor outcrops adjacent to the shoreline southeast of Stinson Beach that are commonly continuous with onshore coastal outcrops. Faults were primarily mapped by interpretation of seismic reflection profile data (see field activities S-8-09-NC and L-1-06-SF). The seismic reflection profiles were collected between 2006 and 2009. In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP) to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats and geology within the 3-nautical-mile limit of California's State Waters. CSMP has divided coastal California into 110 map blocks, each to be published individually as United States Geological Survey Open-File Reports (OFRs) or Scientific Investigations Maps (SIMs) at a scale of 1:24,000. Maps display seafloor morphology and character, identify potential marine benthic habitats and illustrate both the seafloor geology and shallow (to about 100 m) subsurface geology. Data layers for bathymetry, bathymetric contours, acoustic backscatter, seafloor character, potential benthic habitat and offshore geology were created for each map block, as well as regional-scale data layers for sediment thickness, depth to transition, transgressive contours, isopachs, predicted distributions of benthic macro-invertebrates and visual observations of benthic habitat from video cruises over the entire state. These data are intended for science researchers, students, policy makers, and the general public. This information is not intended for navigational purposes.The data can be used with geographic information systems (GIS) software to display geologic and oceanographic information. Additionally, this coverage can provide a geologic map for the public and geoscience community to aid in assessments and mitigation of geologic hazards in the coastal region and sufficient geologic information for land-use and land-management decisions both onshore and offshore. This information is not intended for navigational purposes. Johnson, S.Y., Greene, H.G., Manson, M.W., Hartwell, S.R., Endris, C.A., and Watt, J.T. (2014). Faults: Offshore of Bolinas, California, 2009. California State Waters Map Series Data Catalog: U.S. Geological Survey Data Series 781. Available at: http://purl.stanford.edu/hv220sb1684. Map political location: Marin County, California Compilation scale: 1:24,000 Base maps used are hillshades generated from IfSAR, LiDAR, and multibeam mapping both onshore and offshore (see Bathymetry Hillshade--Offshore Bolinas, California, DS 781, for more information). References Cited Bolt, B.A., 1968, The focus of the 1906 California earthquake: Bulletin of the Seismological Society of America, v. 58, p. 457-471. Bruns, T.R., Cooper, A.K., Carlson, P.R., and McCulloch, D.S., 2002, Structure of the submerged San Andreas and San Gregorio fault zones in the Gulf of Farallones as inferred from high-resolution seismic-reflection data, in Parsons, T. (ed.), Crustal structure of the coastal and marine San Francisco Bay region, California: U.S. Geological Survey Professional Paper 1658, p. 77-117. Lomax, A., 2005, A reanalysis of the hypocentral location and related observations for the Great 1906 California earthquake: Bulletin of the Seismological Society of America, v. 95, p. 861-877. Ryan, H.F., Parsons, T., and Sliter, R.W., 2008. Vertical tectonic deformation associated with the San Andreas fault zone offshore of San Francisco, California. Tectonphysics, 429 (1-2), p. 209-224. U.S. Geological Survey and California Geological Survey, 2010, Quaternary fault and fold database for the United States, accessed April 5, 2012, from USGS website: http://earthquake.usgs.gov/hazards/qfaults/. This layer is presented in the WGS84 coordinate system for web display purposes. Downloadable data are provided in native coordinate system or projection.

  6. Title: Habitat: Offshore of Fort Ross, California, 2014

    Contributors:

    Summary: This polygon shapefile represents potential benthic habitats in the offshore area of Fort Ross, California. Using multibeam echosounder (MBES) bathymetry and backscatter data, potential marine benthic habitat maps were constructed. The habitats were based on substrate types and documented or "ground truthed" using underwater video images and seafloor samples obtained by the USGS. These maps display various habitat types that range from flat, soft, unconsolidated sediment-covered seafloor to hard, deformed (folded), or highly rugose and differentially eroded bedrock exposures. Rugged, high-relief, rocky outcrops that have been eroded to form ledges and small caves are ideal habitat for rockfish (Sebastes spp.) and other bottom fish such as lingcod (Ophiodon elongatus). This layer is part of USGS Data Series 781. In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP) to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats and geology within the 3-nautical-mile limit of California's State Waters. CSMP has divided coastal California into 110 map blocks, each to be published individually as United States Geological Survey Open-File Reports (OFRs) or Scientific Investigations Maps (SIMs) at a scale of 1:24,000. Maps display seafloor morphology and character, identify potential marine benthic habitats and illustrate both the seafloor geology and shallow (to about 100 m) subsurface geology. Data layers for bathymetry, bathymetric contours, acoustic backscatter, seafloor character, potential benthic habitat and offshore geology were created for each map block, as well as regional-scale data layers for sediment thickness, depth to transition, transgressive contours, isopachs, predicted distributions of benthic macro-invertebrates and visual observations of benthic habitat from video cruises over the entire state. These data are intended for science researchers, students, policy makers, and the general public. This information is not intended for navigational purposes.The data can be used with geographic information systems (GIS) software to display geologic and oceanographic information. Additionally, this coverage can provide a geologic map for the public and geoscience community to aid in assessments and mitigation of geologic hazards in the coastal region and sufficient geologic information for land-use and land-management decisions both onshore and offshore. This information is not intended for navigational purposes. Dieter, B.E., Greene, H.G., and Endris, C.A. (2014). Habitat: Offshore of Fort Ross, California, 2014. California State Waters Map Series Data Catalog: U.S. Geological Survey Data Series 781. Available at: http://purl.stanford.edu/nw711pj0219. Data used for the creation of the potential marine benthic habitat interpretation consists of multibeam bathymetry, acoustic backscatter, sediment samples, camera-sled imagery, and existing geologic and seafloor interpretive maps. All data were compiled and displayed for interpretation using ESRI ArcGIS software, ArcMap v.10.0. The process consists of editing a shapefile within ArcMap, beginning with the construction of polygons to delineate benthic features. A benthic feature is an area with common characteristics which can be characterized as a single potential habitat type. The boundaries and extents of these features were determined from the bathymetric data. In general, interpretations were made at scales between 1:2,000 and 1:5,000. The USGS kindly provided the Center for Habitat Studies with a geodatabase consisting of feature datasets delineating geologic features and attributes for offshore Fort Ross. Some of the delineated polygons were preserved as part of the potential marine benthic habitat characterization. However, the Greene and others (2007) code was used in attributing the dataset and additional polygons were added using the methods outlined below. High-resolution multibeam sonar data in the form of bathymetric depth grids (seafloor digital elevation models, referred to as the "bathymetry") were the primary data used in the interpretation of potential habitat types. Shaded-relief imagery ("hillshade") allows for visualization of the terrain and interpretation of submarine landforms. On the basis of these hillshades, areas of rock were identified by their often sharply defined edges and high relative relief; these may be contiguous outcrops, isolated parts of outcrop protruding through sediment cover (pinnacles), or isolated boulders. Although these types of features can be confidently characterized as exposed rock, it is not uncommon to find areas within or around the rocky feature that appear to be covered by a thin veneer of sediment. These areas are identified as "mixed" induration, containing both rock and sediment. Broad areas of the seafloor lacking sharp and angular characteristics are considered to be sediment. Sedimentary features may contain erosional or depositional characteristics recognizable in the bathymetry, such as dynamic bedforms (dunes or sand waves). General morphologic features such as scours, mounds, and depressions were also identified using the hillshade imagery. The combination of acoustic backscatter data and "ground truthed" sediment samples were used to delineate seafloor sediment types within areas identified as "soft (s)" induration. Initially, ground truth data, in the form of grab sample descriptions and average grain size measurements, were categorized into four grain-size categories: mud (m), muddy sand (s/m), sand (s), and sandy gravel (s/g). Backscatter data was then classified into four intensity categories (low, med, high, very high) that are assumed to correspond to relative grain sizes. The aim was to develop an intensity classification of the seafloor that correlated with the data collected from the sediment samples. Thus, the combination of remotely observed data (acoustic backscatter) and directly observed data (sediment grab samples) translates to higher confidence in our ability to interpret broad areas of the seafloor. Nonetheless, we caution against using our sediment type interpretations as anything more than "best-guess" because of the following issues: characterization of contiguous sediment bodies is a difficult procedure because even small areas can exhibit a wide spectrum of backscatter-intensity values that lack distinct boundaries; backscatter intensity can be affected by depth, vegetation, water column conditions, and seafloor relief; and directly observed sediment data, in the form of sediment samples, represents a very small area relative to remotely observed data, requiring broad areas of interpolation. Please refer to Greene and others (2007) for more information regarding the Benthic Marine Potential Habitat Classification Scheme and the codes used to represent various seafloor features. References Cited: Greene, H.G., Bizzarro, J.J., O'Connell, V.M., and Brylinsky, C.K., 2007, Construction of digital potential marine benthic habitat maps using a coded classification scheme and its application, in Todd, B.J., and Greene, H.G., eds., Mapping the seafloor for habitat characterization: Geological Association of Canada Special Paper 47, p. 141-155. Greene, H.G., Yoklavich, M.M., Starr, R.M., O'Connell, V.M., Wakefield, W.W., Sullivan, D.E., McRea, J.E., Jr., and Cailliet, G.M., 1999, A classification scheme for deep seafloor habitats: Oceanologica Acta, v. 22, no. 6, p. 663-678. This layer is presented in the WGS84 coordinate system for web display purposes. Downloadable data are provided in native coordinate system or projection.

  7. Title: Habitat: Offshore of Coal Oil Point, California, 2012

    Contributors:

    Summary: This polygon shapefile contains areas of potential benthic habitats within the offshore area of Coal Oil Point, California. This layer is part of USGS Data Series 781. In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP) to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats and geology within the 3-nautical-mile limit of California's State Waters. CSMP has divided coastal California into 110 map blocks, each to be published individually as United States Geological Survey Open-File Reports (OFRs) or Scientific Investigations Maps (SIMs) at a scale of 1:24,000. Maps display seafloor morphology and character, identify potential marine benthic habitats and illustrate both the seafloor geology and shallow (to about 100 m) subsurface geology. Data layers for bathymetry, bathymetric contours, acoustic backscatter, seafloor character, potential benthic habitat and offshore geology were created for each map block, as well as regional-scale data layers for sediment thickness, depth to transition, transgressive contours, isopachs, predicted distributions of benthic macro-invertebrates and visual observations of benthic habitat from video cruises over the entire state. These data are intended for science researchers, students, policy makers, and the general public. This information is not intended for navigational purposes.The data can be used with geographic information systems (GIS) software to display geologic and oceanographic information. Additionally, this coverage can provide a geologic map for the public and geoscience community to aid in assessments and mitigation of geologic hazards in the coastal region and sufficient geologic information for land-use and land-management decisions both onshore and offshore. This information is not intended for navigational purposes. U.S. Geological Survey. (2013). Habitat: Offshore of Coal Oil Point, California, 2012. California State Waters Map Series Data Catalog: U.S. Geological Survey Data Series 781. Available at: http://purl.stanford.edu/wj400hk8358. Data used for the creation of the potential marine benthic habitat interpretation consists of multibeam bathymetry, acoustic backscatter, sediment samples, camera-sled imagery, and existing geologic and seafloor interpretive maps. All data were compiled and displayed for interpretation using ESRI ArcGIS software, ArcMap v.9.3. The process utilizes editing a shapefile within ArcMap, beginning with the construction of polygons to delineate benthic features. A feature is an area with common characteristics which can be characterized as a single potential habitat type. The boundaries and extents of these features were determined from the bathymetric data. Generally, interpretations were made at scales ranging between 1:2,000 and 1:5,000. The USGS kindly provided the Center for Habitat Studies with a geodatabase consisting of feature datasets delineating geologic features and attributes for the Santa Barbara Channel. Some of the delineated polygons were preserved as part of the potential marine benthic habitat characterization. However, the Greene et. al (2007) code was used in attributing the dataset and additional polygons were added using the methods outlined below. High resolution multibeam sonar data in the form of bathymetric depth grids (seafloor digital elevation models, referred to as the "bathymetry") were the primary data used in the interpretation of potential habitat types. Shaded relief imagery ("hillshade") allows for visualization of the terrain and interpretation of submarine landforms. Based on these hillshades, areas of rock were identified by their often sharply defined edges and high relative relief; these may be contiguous outcrops, isolated portions of outcrop protruding through sediment cover (pinnacles), or isolated boulders. Although these types of features can be confidently characterized as exposed rock, it is not uncommon to find areas within or around the rocky feature that appear to be covered by a thin veneer of sediment. These areas are identified as "mixed" induration, containing both rock and sediment. Broad areas of the seafloor lacking sharp and angular characteristics are considered to be sediment. Sedimentary features may contain erosional or depositional characteristics recognizable in the bathymetry, such as dynamic bedforms (dunes or sand waves). General morphologic features such as scours, mounds, and depressions were also identified using the hillshade relief imagery. The combination of acoustic backscatter data and "groundtruthed" sediment samples were used to delineate seafloor sediment types within areas identified as "soft (s)" induration. Initially, groundtruth data, in the form of grab sample descriptions and average grain size measurements, were categorized into four grain-size categories: mud (m), muddy sand (s/m), sand (s), and sandy gravel (s/g). Backscatter data was then classified into four intensity categories (low, med, high, very high) that are assumed to correspond to relative grain sizes. The aim was to develop an intensity classification of the seafloor that correlated with the data collected from the sediment samples. Thus, the combination of remotely observed data (acoustic backscatter) and directly observed data (sediment grab samples) translates to higher confidence in our ability to interpret broad areas of the seafloor. Nonetheless, we caution against using our sediment type interpretations as anything more than "best-guess" due to the following issues: characterization of contiguous sediment bodies is a difficult procedure since even small areas can exhibit a wide spectrum of backscatter intensity values that lack distinct boundaries; backscatter intensity can be affected by depth, vegetation, water column conditions, and seafloor relief; and directly observed sediment data, in the form of sediment samples, represents a very small area relative to remotely observed data, requiring broad areas of interpolation. Please refer to Greene et al. (2007) for more information regarding the Benthic Marine Potential Habitat Classification Scheme and the codes used to represent various seafloor features. References Cited: Greene, H.G., Yoklavich, M.M., Starr, R.M., O'Connell, V.M., Wakefield, W.W., Sullivan, D.E., McRea, J.E., Jr., and Cailliet, G.M., 1999, A classification scheme for deep seafloor habitats: Oceanologica Acta, v. 22, no. 6, p. 663-678. Greene, H.G., Bizzarro, J.J., O'Connell, V.M., and Brylinsky, C.K., 2007, Construction of digital potential marine benthic habitat maps using a coded classification scheme and its application, in Todd, B.J., and Greene, H.G., eds., Mapping the seafloor for habitat characterization: Geological Association of Canada Special Paper 47, p. 141-155. This layer is presented in the WGS84 coordinate system for web display purposes. Downloadable data are provided in native coordinate system or projection.

  8. Title: Faults: Offshore of San Francisco, California, 2010

    Contributors:

    Summary: This line shapefile contains fault lines within the offshore area of San Francisco, California. The map area straddles the right-lateral transform boundary between the North American and Pacific plates and is cut by several active faults that cumulatively form a distributed shear zone, including the San Andreas Fault, the eastern strand of the San Gregorio Fault, the Golden Gate Fault, and the Potato Patch Fault (Bruns and others, 2002; Ryan and others, 2008). These faults are covered by Holocene sediments (mostly units Qms, Qmsb, Qmst) with no seafloor expression, and are mapped using seismic-reflection data (see field activities S-15-10-NC and F-2-07-NC). The San Andreas Fault is the primary plate-boundary structure and extends northwest across the map area; it intersects the shoreline 10 km north of the map area at Bolinas Lagoon, and 3 km south of the map area at Mussel Rock. This section of the San Andreas Fault has an estimated slip rate of 17 to 24 mm/yr (U.S. Geological Survey, 2010), and the devastating Great 1906 California earthquake (M 7.8) is thought to have nucleated on the San Andreas a few kilometers offshore of San Francisco within the map area (Bolt, 1968; Lomax, 2005). The San Andreas Fault forms the boundary between two distinct basement terranes, Upper Jurassic to Lower Cretaceous rocks of the Franciscan Complex to the east, and Late Cretaceous granitic and older metamorphic rocks of the Salinian block to the west. Franciscan Complex rocks (unit KJf, undivided) form seafloor outcrops at and north of Point Lobos adjacent to onland exposures. The Franciscan is divided into 13 different units for the onshore portion of this geologic map based on different lithologies and ages, but the unit cannot be similarly divided in the offshore because of a lack of direct observation and (or) sampling. Faults were primarily mapped by interpretation of seismic reflection profile data (see field activities S-15-10-NC and F-2-07-NC). The seismic reflection profiles were collected between 2007 and 2010. A map that shows these data is published in Open-File Report 2015-1068, "California State Waters Map Series--Offshore of San Francisco, California." This layer is part of USGS Data Series 781. In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP) to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats and geology within the 3-nautical-mile limit of California's State Waters. CSMP has divided coastal California into 110 map blocks, each to be published individually as United States Geological Survey Open-File Reports (OFRs) or Scientific Investigations Maps (SIMs) at a scale of 1:24,000. Maps display seafloor morphology and character, identify potential marine benthic habitats and illustrate both the seafloor geology and shallow (to about 100 m) subsurface geology. Data layers for bathymetry, bathymetric contours, acoustic backscatter, seafloor character, potential benthic habitat and offshore geology were created for each map block, as well as regional-scale data layers for sediment thickness, depth to transition, transgressive contours, isopachs, predicted distributions of benthic macro-invertebrates and visual observations of benthic habitat from video cruises over the entire state. This coverage can be used to to aid in assessments and mitigation of geologic hazards in the coastal region and to provide sufficient geologic information for land-use and land-management decisions both onshore and offshore. These data are intended for science researchers, students, policy makers, and the general public. This information is not intended for navigational purposes.The data can be used with geographic information systems (GIS) software to display geologic and oceanographic information. Greene, H.G., Johnson, S.Y., Manson, M.W., Hartwell, S.R., Endris, C.A., and Bruns, T.R. (2014). Faults: Offshore of San Francisco, California, 2010. California State Waters Map Series Data Catalog: U.S. Geological Survey Data Series 781. Available at: http://purl.stanford.edu/xw411td7423. Map political location: San Mateo County, California Compilation scale: 1:24,000 Base maps used are hillshades generated from IfSAR, LiDAR, and multibeam mapping both onshore and offshore (see Bathymetry Hillshade--Offshore San Francisco, California, DS 781, for more information). . References Cited Bolt, B.A., 1968, The focus of the 1906 California earthquake: Bulletin of the Seismological Society of America, v. 58, p. 457-471. Bruns, T.R., Cooper, A.K., Carlson, P.R., and McCulloch, D.S., 2002, Structure of the submerged San Andreas and San Gregorio fault zones in the Gulf of Farallones as inferred from high-resolution seismic-reflection data, in Parsons, T. (ed.), Crustal structure of the coastal and marine San Francisco Bay region, California: U.S. Geological Survey Professional Paper 1658, p. 77-117. Lomax, A., 2005, A reanalysis of the hypocentral location and related observations for the Great 1906 California earthquake: Bulletin of the Seismological Society of America, v. 95, p. 861-877. Ryan, H.F., Parsons, T., and Sliter, R.W., 2008. Vertical tectonic deformation associated with the San Andreas fault zone offshore of San Francisco, California. Tectonophysics, 429 (1-2), p. 209-224. U.S. Geological Survey and California Geological Survey, 2010, Quaternary fault and fold database for the United States, accessed April 5, 2012, from USGS website: http://earthquake.usgs.gov/hazards/qfaults/. This layer is presented in the WGS84 coordinate system for web display purposes. Downloadable data are provided in native coordinate system or projection.

  9. Title: Geology: Offshore of San Francisco, California, 2010

    Contributors:

    Summary: This polygon shapefile depicts geological features within the offshore area of San Francisco, California. The map area includes the Golden Gate inlet which connects the Pacific Ocean and San Francisco Bay. San Francisco Bay, the largest estuary on the U.S. west coast, is located at the mouth of the Sacramento and San Joaquin rivers and drains over 40 percent of the state of California. The large surface area of the bay and diurnal tidal range of 1.78 m creates an enormous tidal prism (about 2 billion cu m) and strong tidal currents, commonly exceeding 2.5 m/s (Barnard and others, 2006a, 2006b, 2007). Acceleration of these currents through the constricted inlet has led to scouring of a bedrock channel that has a maximum depth of 113 m. Large fields of sand waves (Barnard and others, 2007) (unit Qmsw) have formed both west and east of this channel as flow expands and tidal currents decelerate. Active tidally influenced map units inside San Francisco Bay also include sand-dominated deposits (unit Qbs) and more coarse-grained sand, gravel, and pebble deposits (unit Qbsc). Sand wave fields resulting from tidal flow are also present in the nearshore along the Pacific Coast, both north and south of the Golden Gate inlet. The sand wave fields appear to be variably mobilized by both ebb and flood tides, but the presence of a large (~150 sq km) ebb-tidal delta at the mouth of the bay west of the inlet indicates net sediment transport has been to the west. The ebb-tidal delta west of the Golden Gate inlet is mapped as two units. The inner part of the delta (unit Qmst) comprises a semi-circular, inward-sloping (i.e., toward the Golden Gate inlet), sandy seafloor at water depths of about 12 to 24 m. This inner delta has a notably smooth surface, indicating sediment transport and deposition under different flow regimes (defined by tidal current strength and depth) than those in which the sand waves formed and are maintained. Further deceleration of tidal currents beyond the inner delta has led to development of a large, shoaling (about 8 to 12 m water depth), horse-shoe shaped, delta-mouth bar (unit Qmsb). This feature (the "San Francisco Bar") surrounds the inner delta, and its central crest is cut by a dredged shipping channel that separates the nothern and southern parts of the bar, the "North Bar" and "South Bar," respectively. The San Francisco Bar is shaped by both tidal currents and waves, which regularly exceed 6 m in height on the continental shelf during major winter storms (Barnard and others, 2007). This mix of tidal and wave influence results in a variably hummocky, mottled, and rilled seafloor, and this surface texture is used as a primary criteria for mapping the unit and defining its boundaries. Outside the San Francisco Bar to the limits of the map area, the notably flat shelf (less than 0.2 degrees) and the nearshore are wave-dominated and characterized by sandy marine sediment (unit Qms). Local zones of wave-winnowed (?) coarser sediment (unit Qmsc) indicated by high backscatter occur along the coast offshore Ocean Beach. Unit Qmsc is also mapped inside and at the mouth of the Golden Gate inlet where it presumably results from winnowing by strong tidal currents. Coarser sediment also occurs as winnowed lags in rippled scour depressions (unit Qmss), recognized on the basis of high-resolution bathymetry and backscatter. These depressions are typically a few tens of centimeters deep and are bounded by mobile sand sheets (for example, Cacchione and others, 1984). This unit occurs primarily in the nearshore south of the Golden Gate inlet offshore of Ocean Beach (water depth less than 13 m) and north of the inlet offshore Muir Beach (water depth less than 17 m). Artificial seafloor (unit af) has several distinct map occurrences: (1) sites of active sand mining inside San Francisco Bay; (2) the dredged shipping channel at the central crest of the San Francisco Bar; (3) the sewage outfall pipe, associated rip rap, and surrounding scour channel offshore Ocean Beach; and (4) the location of a former waste disposal site about 2.5 km offshore Point Lobos. Although the map shows the areas in which several active sedimentary units (Qmsw, Qmst, Qmsb, Qms, Qmsc, Qmss, Qbsm, Qbsc) presently occur, it is important to note that map units and contacts are dynamic and ephemeral, likely to change during large storms, and on seasonal to decadal scales based on changing external forces such as weather, climate, sea level, and sediment supply. Dallas and Barnard (2011) have noted, for example, that the ebb-tidal delta has dramatically shrunk since 1873 when the first bathymetric survey of the area was undertaken. They document an approximate 1 km landward migration of the crest of the San Francisco Bar, which they attribute to a reduction in the tidal prism of San Francisco Bay and a decrease in coastal sediment. Map unit polygons were digitized over underlying 2-meter base layers developed from multibeam bathymetry and backscatter data. The bathymetry and backscatter data were collected between 2006 and 2010. A map that shows these data is published in Open-File Report 2015-1068, "California State Waters Map Series--Offshore of San Francisco, California." This layer is part of USGS Data Series 781. In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP) to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats and geology within the 3-nautical-mile limit of California's State Waters. CSMP has divided coastal California into 110 map blocks, each to be published individually as United States Geological Survey Open-File Reports (OFRs) or Scientific Investigations Maps (SIMs) at a scale of 1:24,000. Maps display seafloor morphology and character, identify potential marine benthic habitats and illustrate both the seafloor geology and shallow (to about 100 m) subsurface geology. Data layers for bathymetry, bathymetric contours, acoustic backscatter, seafloor character, potential benthic habitat and offshore geology were created for each map block, as well as regional-scale data layers for sediment thickness, depth to transition, transgressive contours, isopachs, predicted distributions of benthic macro-invertebrates and visual observations of benthic habitat from video cruises over the entire state. This coverage can be used to to aid in assessments and mitigation of geologic hazards in the coastal region and to provide sufficient geologic information for land-use and land-management decisions both onshore and offshore. These data are intended for science researchers, students, policy makers, and the general public. This information is not intended for navigational purposes.The data can be used with geographic information systems (GIS) software to display geologic and oceanographic information. Greene, H.G., Johnson, S.Y., Manson, M.W., Hartwell, S.R., Endris, C.A., and Bruns, T.R. (2014). Geology: Offshore of San Francisco, California, 2010. California State Waters Map Series Data Catalog: U.S. Geological Survey Data Series 781. Available at: http://purl.stanford.edu/kn414qm4080. Map political location: San Mateo County, California Compilation scale: 1:24,000 Base maps used are hillshades generated from IfSAR, LiDAR, and multibeam mapping both onshore and offshore (see Bathymetry Hillshade--Offshore San Francisco, California, DS 781, for more information). References Cited Barnard, P.L., Eshelman, J., Erikson, L., and Hanes, D.M., 2007, Coastal processes study at Ocean Beach, San Francisco, CA: Summary of data collection 2004-2006: U.S. Geological Survey Open-File Report 2007-1217, 165 p. Barnard, P.L., Hanes, D.M., Kvitek, R.G., and Iampietro, P.J., 2006a, Sand waves at the mouth of San Francisco Bay, California: U.S. Geological Survey Scientific Investigations Map 2944, 5 sheets. Barnard, P.L., Hanes, D.M., Rubin, D.M., and Kvitek, R.G., 2006b, Giant sand waves at the mouth of San Francisco Bay: EOS, V. 87, p. 285, 289. Cacchione, D.A., Drake, D.E., Grant, W.D., and Tate, G.B., 1984. Rippled scour depressions of the inner continental shelf off central California: Journal of Sedimentary Petrology, v 54, p. 1280-1291. Dallas, K.L., and Barnard, P.L., 2011, Anthropogenic influences on shoreline and nearshore evolution in the San Francisco coastal system: Estuarine Coastal and Shelf Science, v. 92, p. 195-204. This layer is presented in the WGS84 coordinate system for web display purposes. Downloadable data are provided in native coordinate system or projection.

  10. Title: Habitat: Offshore of Point Reyes, California, 2014

    Contributors:

    Summary: Using multibeam echosounder (MBES) bathymetry and backscatter data, potential marine benthic habitat maps were constructed. The habitats were based on substrate types and documented or "ground truthed" using underwater video images and seafloor samples obtained by the USGS. These maps display various habitat types that range from flat, soft, unconsolidated sediment-covered seafloor to hard, deformed (folded), or highly rugose and differentially eroded bedrock exposures. Rugged, high-relief, rocky outcrops that have been eroded to form ledges and small caves are ideal habitat for rockfish (Sebastes spp.) and other bottom fish such as lingcod (Ophiodon elongatus). The map that show these data are published in Open-File Report 2015-1114, "California State Waters Map Series—Offshore of Point Reyes, California." This layer is part of USGS Data Series 781. In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP) to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats and geology within the 3-nautical-mile limit of California's State Waters. CSMP has divided coastal California into 110 map blocks, each to be published individually as United States Geological Survey Open-File Reports (OFRs) or Scientific Investigations Maps (SIMs) at a scale of 1:24,000. Maps display seafloor morphology and character, identify potential marine benthic habitats and illustrate both the seafloor geology and shallow (to about 100 m) subsurface geology. Data layers for bathymetry, bathymetric contours, acoustic backscatter, seafloor character, potential benthic habitat and offshore geology were created for each map block, as well as regional-scale data layers for sediment thickness, depth to transition, transgressive contours, isopachs, predicted distributions of benthic macro-invertebrates and visual observations of benthic habitat from video cruises over the entire state. These data are intended for science researchers, students, policy makers, and the general public. This information is not intended for navigational purposes.The data can be used with geographic information systems (GIS) software to display geologic and oceanographic information. Additionally, this coverage can provide a geologic map for the public and geoscience community to aid in assessments and mitigation of geologic hazards in the coastal region and sufficient geologic information for land-use and land-management decisions both onshore and offshore. This information is not intended for navigational purposes. Endris, C.A., Greene, H.G. and Dieter, B.E. (2014). Habitat: Offshore of Point Reyes, California, 2014. California State Waters Map Series Data Catalog: U.S. Geological Survey Data Series 781. Available at: http://purl.stanford.edu/nt663ss8448. Data used for the creation of the potential marine benthic habitat interpretation consists of multibeam bathymetry, acoustic backscatter, sediment samples, camera-sled imagery, and existing geologic and seafloor interpretive maps. All data were compiled and displayed for interpretation using ESRI ArcGIS software, ArcMap v.10.0. The process consists of editing a shapefile within ArcMap, beginning with the construction of polygons to delineate benthic features. A benthic feature is an area with common characteristics which can be characterized as a single potential habitat type. The boundaries and extents of these features were determined from the bathymetric data. In general, interpretations were made at scales between 1:2,000 and 1:5,000. The USGS kindly provided the Center for Habitat Studies with a geodatabase consisting of feature datasets delineating geologic features and attributes for offshore of Point Reyes. Some of the delineated polygons were preserved as part of the potential marine benthic habitat characterization. However, the Greene and others (2007) code was used in attributing the dataset and additional polygons were added using the methods outlined below. High-resolution multibeam sonar data in the form of bathymetric depth grids (seafloor digital elevation models, referred to as the "bathymetry") were the primary data used in the interpretation of potential habitat types. Shaded-relief imagery ("hillshade") allows for visualization of the terrain and interpretation of submarine landforms. On the basis of these hillshades, areas of rock were identified by their often sharply defined edges and high relative relief; these may be contiguous outcrops, isolated parts of outcrop protruding through sediment cover (pinnacles), or isolated boulders. Although these types of features can be confidently characterized as exposed rock, it is not uncommon to find areas within or around the rocky feature that appear to be covered by a thin veneer of sediment. These areas are identified as "mixed" induration, containing both rock and sediment. Broad areas of the seafloor lacking sharp and angular characteristics are considered to be sediment. Sedimentary features may contain erosional or depositional characteristics recognizable in the bathymetry, such as dynamic bedforms (dunes or sand waves). General morphologic features such as scours, mounds, and depressions were also identified using the hillshade imagery. The combination of acoustic backscatter data and "ground truthed" sediment samples were used to delineate seafloor sediment types within areas identified as "soft (s)" induration. Initially, ground truth data, in the form of grab sample descriptions and average grain size measurements, were categorized into four grain-size categories: mud (m), muddy sand (s/m), sand (s), and sandy gravel (s/g). Backscatter data was then classified into four intensity categories (low, med, high, very high) that are assumed to correspond to relative grain sizes. The aim was to develop an intensity classification of the seafloor that correlated with the data collected from the sediment samples. Thus, the combination of remotely observed data (acoustic backscatter) and directly observed data (sediment grab samples) translates to higher confidence in our ability to interpret broad areas of the seafloor. Nonetheless, we caution against using our sediment type interpretations as anything more than "best-guess" because of the following issues: characterization of contiguous sediment bodies is a difficult procedure because even small areas can exhibit a wide spectrum of backscatter-intensity values that lack distinct boundaries; backscatter intensity can be affected by depth, vegetation, water column conditions, and seafloor relief; and directly observed sediment data, in the form of sediment samples, represents a very small area relative to remotely observed data, requiring broad areas of interpolation. Please refer to Greene and others (2007) for more information regarding the Benthic Marine Potential Habitat Classification Scheme and the codes used to represent various seafloor features. References Cited: Greene, H.G., Bizzarro, J.J., O'Connell, V.M., and Brylinsky, C.K., 2007, Construction of digital potential marine benthic habitat maps using a coded classification scheme and its application, in Todd, B.J., and Greene, H.G., eds., Mapping the seafloor for habitat characterization: Geological Association of Canada Special Paper 47, p. 141-155. Greene, H.G., Yoklavich, M.M., Starr, R.M., O'Connell, V.M., Wakefield, W.W., Sullivan, D.E., McRea, J.E., Jr., and Cailliet, G.M., 1999, A classification scheme for deep seafloor habitats: Oceanologica Acta, v. 22, no. 6, p. 663-678. This layer is presented in the WGS84 coordinate system for web display purposes. Downloadable data are provided in native coordinate system or projection.

  11. Title: Geology: Offshore of Pacifica, California, 2010

    Contributors:

    Summary: This polygon shapefile depictss geologic features in the offshore area of Pacifica, California. The continental shelf within California's State waters in the Pacifica area is shallow (water depths of 0 to about 40 m) and flat continental shelf with a very gentle (less than 0.5 degrees) offshore dip. The morphology and geology of this shelf result from the interplay between local tectonics, sea-level rise, sedimentary processes, and oceanography. Tectonic influences are related to local faulting and uplift (see below). Sea level has risen about 125 to 130 m over the last about 21,000 years (for example, Lambeck and Chappel, 2001; Gornitz, 2009), leading to progressive eastward migration (a few tens of km) of the shoreline and wave-cut platform, and associated transgressive erosion and deposition (for example, Catuneanu, 2006). The Offshore of Pacifica map area is now mainly an open shelf that is subjected to full, and sometimes severe, Pacific Ocean wave energy and strong currents. Most of the offshore map area is covered by marine sediments; artificial fill (unit af) occurs only at the site of the Pacifica Pier. Given their relatively shallow depths and exposure to high wave energy, modern shelf deposits are mostly sand (unit Qms). More coarse-grained sands and gravels (units Qmss and Qmsc) are primarily recognized on the basis of bathymetry and high backscatter (Bathymetry--Offshore of Pacifica map area, California, and Backscatter--Offshore of Pacifica map area, California). Unit Qmsc occurs as nearshore bars (less than 12 m water depth) for about two kilometers north of Mussel Rock and more locally offshore Pacifica, and in two isolated patches farther offshore at about 25 m water depth. Unit Qmss forms erosional lags in features known as ârippled scour depressionsâ (for example, Cacchione and others, 1984) or âsorted bedformsâ (for example, Trembanis and Hume, 2011), at water depths of about 15 to 25 m, in contact with offshore bedrock uplifts and unit Qms. Such features are common along this stretch of the California coast where offshore sandy sediment can be relatively thin (thus unable to fill the depressions) due to both lack of sediment supply from rivers and to significant sediment erosion and offshore transport during large winter storms. Although the general areas in which both unit Qmss scour depressions and unit Qmsc bars occur are not likely to change substantially, the boundaries of the unit(s) are likely ephemeral, changing seasonally and during significant storm events. Areas where shelf sediments form thin (less than 2 m) veneers over low relief bedrock of the Franciscan Complex (see below) occur in the northern half of the map and are mapped as unit Qms/KJf. This hybrid unit is recognized and delineated based on the combination of flat relief, continuity with moderate to high relief onshore or offshore bedrock outcrops, high-resolution seismic-reflection data, and in some cases moderate to high backscatter. The thin sediment layer is regarded as ephemeral and dynamic, and may or may not be present at a specific location based on storms, seasonal to annual patterns of sediment movement, or longer-term climate cycles. In a nearby, similarly high-energy setting, Storlazzi and others (2011) have described seasonal burial and exhumation of submerged bedrock in northern Monterey Bay. Offshore bedrock exposed at the seafloor is mapped as Jurassic and Cretaceous Franciscan Complex, undivided (unit KJf); Cretaceous granite (unit Kgr); Tertiary and (or) Cretaceous rock, undivided (unit TKu); unnamed sansdstone, shale and conglomerate of Paleocene age (unit Tss); and the Upper Miocene and Pliocene Purisima Formation (unit Tp). These units are delineated by extending outcrops and trends from mapped onshore geology and from their distinctive surface textures as revealed by high-resolution bathymetry (Bathymetry--Offshore of Pacifica map area, California). Purisima Formation outcrops in the southernmost part of the offshore map area form distinctive "ribs," caused by differential erosion of variably resistant, interbedded lithologies (for example, sandstone and mudstone). In contrast, granitic rocks have a densely cross-fractured, rough surface texture, and both the Franciscan Complex and the unnamed Paleocene sedimentary unit have a more masssive, irregular, and smoother surface texture. Purisima Formation outcrops occur in water as deep as 35 m, whereas other bedrock units occur in shallower (less than 20 m) water depths, most commonly adjacent to coastal points underlain by bedrock (for example, Pedro Point and Montara Point). Map unit polygons were digitized over underlying 2-meter base layers developed from multibeam bathymetry and backscatter data. The bathymetry and backscatter data were collected between 2006 and 2010. A map which shows these data is published in Scientific Investigations Map 3302, "California State Waters Map Series--Offshore of Coal Oil Point, California." This layer is part of USGS Data Series 781. In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP) to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats and geology within the 3-nautical-mile limit of California's State Waters. CSMP has divided coastal California into 110 map blocks, each to be published individually as United States Geological Survey Open-File Reports (OFRs) or Scientific Investigations Maps (SIMs) at a scale of 1:24,000. Maps display seafloor morphology and character, identify potential marine benthic habitats and illustrate both the seafloor geology and shallow (to about 100 m) subsurface geology. Data layers for bathymetry, bathymetric contours, acoustic backscatter, seafloor character, potential benthic habitat and offshore geology were created for each map block, as well as regional-scale data layers for sediment thickness, depth to transition, transgressive contours, isopachs, predicted distributions of benthic macro-invertebrates and visual observations of benthic habitat from video cruises over the entire state. These data are intended for science researchers, students, policy makers, and the general public. This information is not intended for navigational purposes.The data can be used with geographic information systems (GIS) software to display geologic and oceanographic information. Additionally, this coverage can provide a geologic map for the public and geoscience community to aid in assessments and mitigation of geologic hazards in the coastal region and sufficient geologic information for land-use and land-management decisions both onshore and offshore. This information is not intended for navigational purposes. Greene, H.G., Hartwell, S.R., Manson, M.W., Johnson, S.Y., Dieter, B.E., Phillips, E.L., and Watt, J.T. (2014). Geology: Offshore of Pacifica, California, 2010. California State Waters Map Series Data Catalog: U.S. Geological Survey Data Series 781. Available at: http://purl.stanford.edu/zg982fx5597. Map political location: San Mateo County, California Compilation scale: 1:24,000 Base maps used are hillshades generated from IfSAR, LiDAR, and multibeam mapping both onshore and offshore (Bathymetry--Offshore of Pacifica map area, California, DS 781, for more information). References Cited Cacchione, D.A., Drake, D.E., Grant, W.D., and Tate, G.B., 1984. Rippled scour depressions of the inner continental shelf off central California: Journal of Sedimentary Petrology, v 54, p. 1280-1291. Catuneanu, O., 2006, Principles of Sequence Stratigraphy: Amsterdam, Elsevier, 375 p. Gornitz, V., 2009, Sea level change, post-glacial, in Gornitz, V., ed., Encyclopedia of Paleoclimatology and Ancient Environments: Encyclopedia of Earth Sciences Series. Springer, pp. 887-893. Lambeck, K., and Chappell, J., 2001, Sea level change through the last glacial cycle: Science, v. 292, p. 679-686. Trembanis, A.C., and Hume, T.M., 2011, Sorted bedforms on the inner shelf off northeastern New Zealand: spatiotemporal relationships and potential paleo-evironmental implications: Geo-Marine Letters, v. 31, p. 203-214. This layer is presented in the WGS84 coordinate system for web display purposes. Downloadable data are provided in native coordinate system or projection.

  12. Title: Geology: Drakes Bay and Vicinity, California, 2009

    Contributors:

    Summary: This polygon shapefile represents geologic features of Drakes Bay and the surrounding vicinity of California. Marine geology and geomorphology were mapped from approximate Mean High Water (MHW) to the 3-nautical-mile limit of California's State Waters. MHW is defined at an elevation of 1.46 m above the North American Vertical Datum of 1988 (NAVD 88). Offshore geologic units were delineated on the basis of integrated analyses of adjacent onshore geology with multibeam bathymetry and backscatter imagery, seafloor-sediment and rock samples (Reid and others, 2006), digital camera and video imagery, and high-resolution seismic-reflection profiles. The onshore bedrock mapping was compiled from Galloway (1977), Clark and Brabb (1997), and Wagner and Gutierrez (2010). Quaternary mapping was compiled from Witter and others (2006) and Wagner and Gutierrez (2010), with unit contacts modified based on analysis of 2012 LiDAR imagery; and additional Quaternary mapping by M.W. Manson. San Andreas Fault traces are compiled from California Geological Survey (1974) and Wagner and Gutierrez (2010). The offshore part of the map area includes the large embayment known as Drakes Bay and extends from the shoreline to water depths of about 40 to 60 m. The continental shelf is quite wide in this area, with the shelfbreak located west of the Farallon High, about 35 km offshore. This map area is largely characterized by a relatively flat (<0.8°) bedrock platform that is locally overlain by thin sediment cover. Sea level has risen about 125 to 130 m over about the last 21,000 years (for example, Lambeck and Chappell, 2001; Peltier and Fairbanks, 2006), leading to broadening of the continental shelf, progressive eastward migration of the shoreline and wave-cut platform, and associated transgressive erosion and deposition (for example, Catuneanu, 2006). Land-derived sediment was carried into this dynamic setting, and then subjected to full Pacific Ocean wave energy and strong currents before deposition or offshore transport. Tectonic influences impacting shelf morphology and geology are related to local faulting, folding, uplift, and subsidence. The Point Reyes Fault Zone runs through the map area and is an offshore curvilinear reverse fault zone (Hoskins and Griffiths, 1971; McCulloch, 1987; Heck and others, 1990; Stozek, 2012) that likely connects with the western San Gregorio fault further to the south (Ryan and others, 2008), making it part of the San Andreas Fault System. The Point Reyes Fault Zone is characterized by a 5 to 11 km-wide zone that is associated with two main fault structures, the Point Reyes Fault and the Western Point Reyes Fault. Late Pleistocene uplift of marine terraces on the Point Reyes Peninsula suggests active deformation west of the San Andreas Fault (Grove and others, 2010). Offshore Double Point, the Point Reyes Fault is associated with warping and folding of Neogene strata visible on high-resolution seismic data. In this map area the cumulative (post-Miocene) slip-rate on the Point Reyes Fault Zone is poorly constrained, but is estimated to be 0.3 mm/yr based on vertical offset of granitic basement rocks (McCulloch, 1987; Wills and others, 2008). Salinian granitic basement rocks (unit Kgg) are exposed on the Point Reyes headland and offshore in the northwest corner of the map area. The granitic rocks are mapped on the basis of massive, bulbous texture and extensive fracturing in multibeam imagery, and high backscatter. Much of the inner shelf is underlain by Neogene marine sedimentary rocks that form the core of the Point Reyes syncline (Weaver, 1949), and include the mid- to late Miocene Monterey Formation (unit Tm), late Miocene Santa Margarita Formation (unit Tsm), late Miocene Santa Cruz Mudstone (unit Tsc), and late Miocene to early Pliocene Purisima Formation (unit Tp; Clark and Brabb, 1997; Powell and others, 2007). At Millers Point, the Monterey Formation is exposed onshore and on the seafloor in the nearshore and appears highly fractured with bedding planes difficult to identify. Seafloor exposures of the younger Tsc and Tp units are characterized by distinct rhythmic bedding and are often gently folded and fractured. Unit Tu refers to seafloor outcrops that may include unit Tm, unit Tsm, or unit Tsc. The Santa Cruz Mudstone and underlying Santa Margarita Sandstone at Double Point are more than 450 m thick in an oil test well (Clark and Brabb, 1997), and these units form coastal bluffs and tidal zone exposures that extend onto the adjacent bedrock shelf. The Santa Cruz Mudstone thins markedly to the northwest and disappears from the section about 10 km to the northwest where Purisima Formation unconformably overlies Santa Margarita Sandstone. We infer the offshore contact between the Santa Cruz Mudstone and Purisima Formation based on an angular unconformity visible in seismic data just southeast of the map area. This angular unconformity becomes conformable to the northwest in the Drakes Bay and Vicinity map area. We suggest this contact bends northward in the subsurface and comes onshore near U-Ranch (Galloway, 1977; Clark and Brabb, 1997). Given the lack of lithological evidence for this contact offshore Double Point, this interpretation is speculative, and an alternative interpretation is that the noted unconformity occurs within the Santa Cruz Mudstone. For this reason, we have queried unit Tp here to indicate this uncertainty. Modern nearshore sediments are mostly sand (unit Qms) and a mix of sand, gravel, and cobbles (units Qmsc and Qmsd). The more coarse-grained sands and gravels (units Qmsc and Qmsd) are primarily recognized on the basis of bathymetry and high backscatter (see Bathymetry--Drakes Bay, California and Backscattter A to C--Drakes Bay, California, DS 781, for more information). Both Qmsc and Qmsd typically have abrupt landward contacts with bedrock and form irregular to lenticular exposures that are commonly elongate in the shore-normal direction. Contacts between units Qmsc and Qms are typically gradational. Unit Qmsd forms erosional lags in scoured depressions that are bounded by relatively sharp and less commonly diffuse contacts with unit Qms horizontal sand sheets. These depressions are typically a few tens of centimeters deep and range in size from a few 10's of meters to more than 1 km2. There are two areas of high-backscatter, and rough seafloor that are notable in that each includes several small (less than about 20,000 m2), irregular "lumps", with as much as 1 m of positive relief above the seafloor (unit Qsr). Southeast of the Point Reyes headland, unit Qsr occurs in water depths between 50 and 60 meters, with individual lumps randomly distributed to west-trending. Southwest of Double Point, unit Qsr occurs in water depths between 30 and 40 meters, with individual lumps having a more northwest trend. Seismic-reflection data (see field activity S-8-09-NC) reveal this lumpy material rests on several meters of latest Pleistocene to Holocene sediment and is thus not bedrock outcrop. Rather, it seems likely that this lumpy material is marine debris, possibly derived from one (or more) of the more than 60 shipwrecks offshore of the Point Reyes Peninsula between 1849 and 1940 (National Park Service, 2012). It is also conceivable that this lumpy terrane consists of biological "hardgrounds". Video transect data crossing unit Qsr near the Point Reyes headland was of insufficient quality to distinguish between these above alternatives. A transition to more fine-grained marine sediments (unit Qmsf) occurs around 50-60 m depth south of the Point Reyes headland and west of Double Point, however, directly south and east of Drakes Estero estuary, backscatter and seafloor sediment samples (Chin and others, 1997) suggest fine-grained sediments extend into water depths as shallow as 30 m. Unit Qmsf is commonly extensively bioturbated and consists primarily of mud and muddy sand. These fine-grained sediments are inferred to have been derived from the Drakes and Limantour Esteros or from the San Francisco Bay to the south, via predominantly northwest flow at the seafloor (Noble and Gelfenbaum, 1990. This layer is part of USGS Data Series 781. In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP) to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats and geology within the 3-nautical-mile limit of California's State Waters. CSMP has divided coastal California into 110 map blocks, each to be published individually as United States Geological Survey Open-File Reports (OFRs) or Scientific Investigations Maps (SIMs) at a scale of 1:24,000. Maps display seafloor morphology and character, identify potential marine benthic habitats and illustrate both the seafloor geology and shallow (to about 100 m) subsurface geology. Data layers for bathymetry, bathymetric contours, acoustic backscatter, seafloor character, potential benthic habitat and offshore geology were created for each map block, as well as regional-scale data layers for sediment thickness, depth to transition, transgressive contours, isopachs, predicted distributions of benthic macro-invertebrates and visual observations of benthic habitat from video cruises over the entire state. These data are intended for science researchers, students, policy makers, and the general public. This information is not intended for navigational purposes.The data can be used with geographic information systems (GIS) software to display geologic and oceanographic information. Additionally, this coverage can provide a geologic map for the public and geoscience community to aid in assessments and mitigation of geologic hazards in the coastal region and sufficient geologic information for land-use and land-management decisions both onshore and offshore. This information is not intended for navigational purposes. Watt, J.T., Manson, M.W., and Greene, H.G. (2014). Geology: Drakes Bay and Vicinity, California, 2009. California State Waters Map Series Data Catalog: U.S. Geological Survey Data Series 781. Available at: http://purl.stanford.edu/pq964cq8146. ). References Cited Catuneanu, O., 2006, Principles of Sequence Stratigraphy: Amsterdam, Elsevier, 375 p. Chin, J.L., Karl, H.A., and Maher, N.M., 1997, Shallow subsurface geology of the continental shelf, Gulf of the Farallones, California, and its relationship to surficial seafloor characteristics: Marine Geology, v. 137, p. 251-269. Clark, J.C., and Brabb, E.E., 1997, Geology of the Point Reyes National Seashore and vicinity: U.S. Geological Survey Open-File Report 97-456, scale 1:48,000. Grove, K., Sklar, L.S., Scherer, A.M., Lee, G., and Davis, J., 2010, Accelerating and spatially-varying crustal uplift and its geomorphic expression, San Andreas Fault zone north of San Francisco, California: Tectonophysics, v. 495, p. 256-268. Hoskins E.G., Griffiths, J.R., 1971, Hydrocarbon potential of northern and central California offshore: American Association of Petroleum Geologists Memoir 15, p. 212-228. Lambeck, K., and Chappell, J., 2001, Sea level change through the last glacial cycle: Science, v. 292, p. 679-686, doi: 10.1126/science.1059549. McCulloch, D.S., 1987, Regional geology and hydrocarbon potential of offshore Central California, in Scholl, D.W., Grantz, A., and Vedder, J.G., eds., Geology and resource potential of the continental margin of Western North America and adjacent ocean basins-Beaufort Sea to Baja California: Circum-Pacific Council for Energy and Mineral Resources Earth Science Series, v. 6, p. 353-401. National Park Service, 2012, Shipwrecks at Point Reyes, available at: http://www.nps.gov/pore/historyculture/upload/map_shipwrecks.pdf Noble, M.A. and Gelfenbaum, G., 1990, A pilot study of currents and suspended sediment in the Gulf of the Farallones: U.S. Geological Survey Open-File Report 90-476, 30 p. Peltier, W.R., and Fairbanks, R.G., 2006, Global glacial ice volume and Last Glacial Maximum duration from an extended Barbados sea level record: Quaternary Science Reviews, v. 25, p. 3,322-3,337. Reid, J.A., Reid, J.M., Jenkins, C.J., Zimmerman, M., Williams, S.J., and Field, M.E., 2006, usSEABED-Pacific Coast (California, Oregon, Washington) offshore surficial-sediment data release: U.S. Geological Survey Data Series 182, available at http://pubs.usgs.gov/ds/2006/182/. Ryan, H.F., Parsons, T., and Sliter, R.W., 2008, Vertical tectonic deformation associated with the San Andreas Fault offshore of San Francisco, California: Tectonophysics, v. 475, p. 209-223. Stozek, B.A., 2012, Geophysical evidence for Quaternary deformation within the offshore San Andreas fault system, northern California: Masters Thesis, San Francisco State University, 141 p. Trembanis, A.C., and Hume, T.M., 2011, Sorted bedforms on the inner shelf off northeastern New Zealand-Spatiotemporal relationships and potential paleo-environmental implications: Geo-Marine Letters, v. 31, p. 203-214. Wagner, D.L., and Gutierrez, C.I., 2010, Preliminary Geologic Map of the Napa 30â x 60â Quadrangle, California: California Geological Survey, scale 1:100,000. Weaver, C.E., 1949, Geology of the Coast Ranges immediately north of San Francisco Bay region, California: Geological Society of America Memoir 35. Weber, K.M., List, J.H., and Morgan, K.L., 2005, An operational Mean High Water datum for determination of shoreline position from topographic lidar data: U.S. Geological Survey Open-File Report 2005-1027, accessed April 5, 2011, at http://pubs.usgs.gov/of/2005/1027/. Wills, C.J., Weldon, R.J., II, and Bryant, W.A., 2008, Appendix A-California fault parameters for the National Seismic Hazard Maps and Working Group on California Earthquake Probabilities 2007: U.S. Geological Survey Open-File Report 2007-1437A, 48 p., available at http://pubs.usgs.gov/of/2007/1437/a/. Witter, R.C., Knudsen, K.L., Sowers, J.M., Wentworth, C.M., Koehler, R.D., Randolph, C.E., Brooks, S.K., and Gans, K.D., 2006, Maps of Quaternary Deposits and Liquefaction Susceptibility in the Central San Francisco Bay Region, California, U.S. Geological Survey Open-File Report 06-1037, scale 1:24,000.</SPAN></P></DIV></DIV></DIV> This layer is presented in the WGS84 coordinate system for web display purposes. Downloadable data are provided in native coordinate system or projection.

  13. Title: Folds: Offshore of Pacifica, California, 2010

    Contributors:

    Summary: This line shapefile contains geologic folds in the offshore area of Pacifica, California. The Offshore of Pacifica map area straddles the right-lateral transform boundary between the North American and Pacific plates and is cut by several active faults that cumulatively form a distributed shear zone, including the San Andreas Fault, the eastern strand of the San Gregorio Fault, the Golden Gate Fault, and the Potato Patch Fault (sheets 8, 9; Bruns and others, 2002; Ryan and others, 2008). These faults are covered by Holocene sediments (mostly units Qms, Qmsb, Qmst) with no seafloor expression, and are mapped using seismic-reflection data (sheet 8). The San Andreas Fault is the primary plate-boundary structure and extends northwest across the map area; it intersects the shoreline 10 km north of the map area at Pacifica Lagoon, and 3 km south of the map area at Mussel Rock. This section of the San Andreas Fault has an estimated slip rate of 17 to 24 mm/yr (U.S. Geological Survey, 2010), and the devastating Great 1906 California earthquake (M 7.8) is thought to have nucleated on the San Andreas a few kilometers offshore of San Francisco within the map area (sheet 9; Bolt, 1968; Lomax, 2005). The San Andreas Fault forms the boundary between two distinct basement terranes, Upper Jurassic to Lower Cretaceous rocks of the Franciscan Complex to the east, and Late Cretaceous granitic and older metamorphic rocks of the Salinian block to the west. Franciscan Complex rocks (unit KJf, undivided) form seafloor outcrops at and north of Point Lobos adjacent to onland exposures. The Franciscan is divided into 13 different units for the onshore portion of this geologic map based on different lithologies and ages, but the unit cannot be similarly divided in the offshore because of a lack of direct observation and (or) sampling. Folds were primarily mapped by interpretation of seismic reflection profile data (see S-15-10-NC and F-2-07-NC). The seismic reflection profiles were collected between 2007 and 2010. A map which shows these data is published in Scientific Investigations Map 3302, "California State Waters Map Series--Offshore of Coal Oil Point, California." This layer is part of USGS Data Series 781. In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP) to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats and geology within the 3-nautical-mile limit of California's State Waters. CSMP has divided coastal California into 110 map blocks, each to be published individually as United States Geological Survey Open-File Reports (OFRs) or Scientific Investigations Maps (SIMs) at a scale of 1:24,000. Maps display seafloor morphology and character, identify potential marine benthic habitats and illustrate both the seafloor geology and shallow (to about 100 m) subsurface geology. Data layers for bathymetry, bathymetric contours, acoustic backscatter, seafloor character, potential benthic habitat and offshore geology were created for each map block, as well as regional-scale data layers for sediment thickness, depth to transition, transgressive contours, isopachs, predicted distributions of benthic macro-invertebrates and visual observations of benthic habitat from video cruises over the entire state. These data are intended for science researchers, students, policy makers, and the general public. This information is not intended for navigational purposes.The data can be used with geographic information systems (GIS) software to display geologic and oceanographic information. Additionally, this coverage can provide a geologic map for the public and geoscience community to aid in assessments and mitigation of geologic hazards in the coastal region and sufficient geologic information for land-use and land-management decisions both onshore and offshore. Greene, H.G., Hartwell, S.R., Manson, M.W., Johnson, S.Y., Dieter, B.E., Phillips, E.L., and Watt, J.T. (2014). Folds: Offshore of Pacifica, California, 2010. California State Waters Map Series Data Catalog: U.S. Geological Survey Data Series 781. Available at: http://purl.stanford.edu/mh718dy4756. Map political location: San Mateo County, California Compilation scale: 1:24,000 Base maps used are hillshades generated from IfSAR, LiDAR, and multibeam mapping both onshore and offshore (see Bathymetry--Offshore of Pacifica map area, California, DS 781, for more information). References Cited Bolt, B.A., 1968, The focus of the 1906 California earthquake: Bulletin of the Seismological Society of America, v. 58, p. 457-471. Bruns, T.R., Cooper, A.K., Carlson, P.R., and McCulloch, D.S., 2002, Structure of the submerged San Andreas and San Gregorio fault zones in the Gulf of Farallones as inferred from high-resolution seismic-reflection data, in Parsons, T. (ed.), Crustal structure of the coastal and marine San Francisco Bay region, California: U.S. Geological Survey Professional Paper 1658, p. 77-117. Lomax, A., 2005, A reanalysis of the hypocentral location and related observations for the Great 1906 California earthquake: Bulletin of the Seismological Society of America, v. 95, p. 861-877. Ryan, H.F., Parsons, T., and Sliter, R.W., 2008. Vertical tectonic deformation associated with the San Andreas fault zone offshore of San Francisco, California. Tectonophysics, 429 (1-2), p. 209-224. U.S. Geological Survey and California Geological Survey, 2010, Quaternary fault and fold database for the United States, accessed April 5, 2012, from USGS website: http://earthquake.usgs.gov/hazards/qfaults/. This layer is presented in the WGS84 coordinate system for web display purposes. Downloadable data are provided in native coordinate system or projection.

  14. Title: Geology: Offshore of Bolinas, California, 2009

    Contributors:

    Summary: This polygon shapefile represents geologic features within the offshore area of Bolinas, California. The continental shelf within California's State waters in the Bolinas area is relatively flat (less than 0.3 degrees) and shallow (less than 30 m) in the entire area, however the seafloor of the "Marin shelf" east of the San Andreas Fault (see below) is smooth and covered with sediment, whereas the seafloor of the "Bolinas shelf" west of this fault has extensive bedrock outcrop from the nearshore to depths of about 25 m and much less sediment cover. The morphology and geology of this shelf result from the interplay between local tectonics, sea-level rise, sedimentary processes, and oceanography. Tectonic influences are related to local faulting, folding, uplift, and subsidence (see below). Sea level has risen about 125 to 130 m over about the last 21,000 years (for example, Lambeck and Chappel, 2001; Gornitz, 2009), leading to progressive eastward migration (a few tens of km) of the shoreline and wave-cut platform, and associated transgressive erosion and deposition (for example, Catuneanu, 2006). The Offshore of Bolinas map area is now subjected to full, and sometimes severe, Pacific Ocean wave energy and strong currents. Given their relatively shallow depths and exposure to high wave energy, modern shelf sediments are mostly sand (unit Qms). More coarse-grained sands and gravels (units Qmsc and Qmss) are primarily recognized on the basis of bathymetry and high backscatter (see Bathymetry--Offshore Bolinas, California and Backscattter A to E--Offshore Bolinas, California, DS 781, for more information). Unit Qmsc occurs in two areas, on the east flank of Bolinas shelf bedrock exposures, and as three mounds south of Bolinas near the outer boundary of Californiaâs State Waters at water depths of about 25 m. The largest of these mounds is about 450 m long and 70 m wide, and has 80 cm of positive relief above the seafloor. Unit Qmss is much more extensive and forms erosional lags in rippled scour depressions (for example, Cacchione and others, 1984) that are typically a few tens of centimeters deep and bounded by mobile sand sheets. The depressions occur in four distinct locations. (1) The first location lies adjacent to bedrock outcrops within 2 km of the shoreline south of Double Point (along the western edge of the map area) at water depths of 10 to 25 m. (2) The second unit Qmss location is about 2 to 6 km south of Bolinas Lagoon at similar water depths, along the eastern flank of the Bolinas shelf. (3) The third, more restricted location, occurs about 3 km southeast of Rocky Point at water depths of about 10 to 12 m along the eastern edge of the map area, adjacent to and offshore of small bedrock uplifts. (4) The fourth location, 2 km south of Stinson Beach, is notably different. The polygon on the map encloses a field that includes more than one hundred, much smaller (length less than 20 m) oval depressions and intervening sand flats, perhaps an originally much larger field that has been almost completely filled in by sediment. Similar unit Qmss rippled-scour depressions are common along this stretch of the California coast where offshore sandy sediment can be relatively thin (thus unable to fill the depressions) due to both lack of river input and to significant erosion and transport of sediment during large northwest winter swells. Although the general areas in which both unit Qmss scour depressions and surrounding mobile sand sheets occur are not likely to change substantially, the boundaries of the unit(s) are likely ephemeral, changing seasonally and during significant storm events. Areas where shelf sediments form thin (less than 2.5 m) veneers over low-relief Neogene bedrock (see below) occur in the western half of the map and are mapped as units Qms/Tsc (Santa Cruz Mudstone) and Qms/Tp? (Purisima Formation, queried). These hybrid units are recognized and delineated based on the combination of flat relief, continuity with moderate to high relief onshore or offshore bedrock outcrops, high-resolution seismic-reflection data (see field activities S-8-09-NC and L-1-06-SF), and in some cases moderate to high backscatter. The thin sediment layer is regarded as ephemeral and dynamic, and may or may not be present at a specific location based on storms, seasonal/annual patterns of sediment movement, or longer-term climate cycles. In a nearby, similarly high-energy setting, Storlazzi and others (2011) have described seasonal burial and exhumation of submerged bedrock in northern Monterey Bay. The southeastern corner of the map area includes a portion of the outer flank of the horseshoe-shaped "San Francisco Bar" (unit Qmsb), which has formed at the mouth of the San Francisco ebb-tidal delta (Barnard and others, 2007; Dallas and Barnard, 2011). This delta-mouth bar is shaped by both tidal currents and waves, resulting in a variably hummocky, mottled, and rilled seafloor, and this surface texture is used as a primary criteria for mapping the unit and defining its contacts. Map unit polygons were digitized over underlying 2-meter base layers developed from multibeam bathymetry and backscatter data (see Bathymetry--Offshore Bolinas, California and Backscattter A to E--Offshore Bolinas, California, DS 781, for more information). The bathymetry and backscatter data were collected between 2006 and 2010. This layer is part of USGS Data Series 781. In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP) to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats and geology within the 3-nautical-mile limit of California's State Waters. CSMP has divided coastal California into 110 map blocks, each to be published individually as United States Geological Survey Open-File Reports (OFRs) or Scientific Investigations Maps (SIMs) at a scale of 1:24,000. Maps display seafloor morphology and character, identify potential marine benthic habitats and illustrate both the seafloor geology and shallow (to about 100 m) subsurface geology. Data layers for bathymetry, bathymetric contours, acoustic backscatter, seafloor character, potential benthic habitat and offshore geology were created for each map block, as well as regional-scale data layers for sediment thickness, depth to transition, transgressive contours, isopachs, predicted distributions of benthic macro-invertebrates and visual observations of benthic habitat from video cruises over the entire state. These data are intended for science researchers, students, policy makers, and the general public. This information is not intended for navigational purposes.The data can be used with geographic information systems (GIS) software to display geologic and oceanographic information. Additionally, this coverage can provide a geologic map for the public and geoscience community to aid in assessments and mitigation of geologic hazards in the coastal region and sufficient geologic information for land-use and land-management decisions both onshore and offshore. This information is not intended for navigational purposes. Johnson, S.Y., Greene, H.G., Manson, M.W., Hartwell, S.R., Endris, C.A., and Watt, J.T. (2014). Geology: Offshore of Bolinas, California, 2009. California State Waters Map Series Data Catalog: U.S. Geological Survey Data Series 781. Available at: http://purl.stanford.edu/zp799xw8630. Map political location: Marin County, California Compilation scale: 1:24,000 Base maps used are hillshades generated from IfSAR, LiDAR, and multibeam mapping both onshore and offshore (see Bathymetry Hillshade--Offshore Bolinas, California, California, DS 781, for more information). References Cited Barnard, P.L., Eshelman, J., Erikson, L., and Hanes, D.M., 2007, Coastal processes study at Ocean Beach, San Francisco, CA: Summary of data collection 2004-2006: U.S. Geological Survey Open-File Report 2007-1217, 165 p. Cacchione, D.A., Drake, D.E., Grant, W.D., and Tate, G.B., 1984. Rippled scour depressions of the inner continental shelf off central California: Journal of Sedimentary Petrology, v 54, p. 1280-1291. Catuneanu, O., 2006, Principles of Sequence Stratigraphy: Amsterdam, Elsevier, 375 p. Dallas, K.L., and Barnard, P.L., 2011, Anthropogenic influences on shoreline and nearshore evolution in the San Francisco coastal system: Estuarine Coastal and Shelf Science, v. 92, p. 195-204. Gornitz, V., 2009, Sea level change, post-glacial, in Gornitz, V., ed., Encyclopedia of Paleoclimatology and Ancient Environments: Encyclopedia of Earth Sciences Series. Springer, pp. 887-893. Lambeck, K., and Chappell, J., 2001, Sea level change through the last glacial cycle: Science, v. 292, p. 679-686. Storlazzi, C.D., Fregoso, T.A., Golden, N.E., and Finlayson, D.P., 2011, Sediment dynamics and the burial and exhumation of bedrock reefs along on emergent coastline as elucidated by repretitive sonar surveys, northern Monterey Bay, CA: Marine Geology, v. 289, p. 46-59.</SPAN></P></DIV></DIV></DIV> This layer is presented in the WGS84 coordinate system for web display purposes. Downloadable data are provided in native coordinate system or projection.

  15. Title: Habitat: Offshore of Bodega Head, California, 2014

    Contributors:

    Summary: This polygon shapefile represents potential benthic habitats for the offshore area of Bodega Head in California. Using multibeam echosounder (MBES) bathymetry and backscatter data, potential marine benthic habitat maps were constructed. The habitats were based on substrate types and documented or "ground truthed" using underwater video images and seafloor samples obtained by the USGS. These maps display various habitat types that range from flat, soft, unconsolidated sediment-covered seafloor to hard, deformed (folded), or highly rugose and differentially eroded bedrock exposures. Rugged, high-relief, rocky outcrops that have been eroded to form ledges and small caves are ideal habitat for rockfish (Sebastes spp.) and other bottom fish such as lingcod (Ophiodon elongatus). This layer is part of USGS Data Series 781. In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP) to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats and geology within the 3-nautical-mile limit of California's State Waters. CSMP has divided coastal California into 110 map blocks, each to be published individually as United States Geological Survey Open-File Reports (OFRs) or Scientific Investigations Maps (SIMs) at a scale of 1:24,000. Maps display seafloor morphology and character, identify potential marine benthic habitats and illustrate both the seafloor geology and shallow (to about 100 m) subsurface geology. Data layers for bathymetry, bathymetric contours, acoustic backscatter, seafloor character, potential benthic habitat and offshore geology were created for each map block, as well as regional-scale data layers for sediment thickness, depth to transition, transgressive contours, isopachs, predicted distributions of benthic macro-invertebrates and visual observations of benthic habitat from video cruises over the entire state. This coverage can be used to aid in assessments and mitigation of geologic hazards in the coastal region and to provide sufficient geologic information for land-use and land-management decisions both onshore and offshore. These data are intended for science researchers, students, policy makers, and the general public. The data can be used with geographic information systems (GIS) software to display geologic and oceanographic information. Additionally, this coverage can provide a geologic map for the public and geoscience community to aid in assessments and mitigation of geologic hazards in the coastal region and sufficient geologic information for land-use and land-management decisions both onshore and offshore. This information is not intended for navigational purposes. Dieter, B.E., Greene, H.G., and Endris, C.A. (2014). Habitat: Offshore of Bodega Head, California, 2014. California State Waters Map Series Data Catalog: U.S. Geological Survey Data Series 781. Available at: http://purl.stanford.edu/vh721pq0822. Data used for the creation of the potential marine benthic habitat interpretation consists of multibeam bathymetry, acoustic backscatter, sediment samples, camera-sled imagery, and existing geologic and seafloor interpretive maps. All data were compiled and displayed for interpretation using ESRI ArcGIS software, ArcMap v.10.0. The process consists of editing a shapefile within ArcMap, beginning with the construction of polygons to delineate benthic features. A benthic feature is an area with common characteristics which can be characterized as a single potential habitat type. The boundaries and extents of these features were determined from the bathymetric data. In general, interpretations were made at scales between 1:2,000 and 1:5,000. The USGS kindly provided the Center for Habitat Studies with a geodatabase consisting of feature datasets delineating geologic features and attributes for offshore Bodega Head. Some of the delineated polygons were preserved as part of the potential marine benthic habitat characterization. However, the Greene and others (2007) code was used in attributing the dataset and additional polygons were added using the methods outlined below. High-resolution multibeam sonar data in the form of bathymetric depth grids (seafloor digital elevation models, referred to as the "bathymetry") were the primary data used in the interpretation of potential habitat types. Shaded-relief imagery ("hillshade") allows for visualization of the terrain and interpretation of submarine landforms. On the basis of these hillshades, areas of rock were identified by their often sharply defined edges and high relative relief; these may be contiguous outcrops, isolated parts of outcrop protruding through sediment cover (pinnacles), or isolated boulders. Although these types of features can be confidently characterized as exposed rock, it is not uncommon to find areas within or around the rocky feature that appear to be covered by a thin veneer of sediment. These areas are identified as "mixed" induration, containing both rock and sediment. Broad areas of the seafloor lacking sharp and angular characteristics are considered to be sediment. Sedimentary features may contain erosional or depositional characteristics recognizable in the bathymetry, such as dynamic bedforms (dunes or sand waves). General morphologic features such as scours, mounds, and depressions were also identified using the hillshade imagery. The combination of acoustic backscatter data and "ground truthed" sediment samples were used to delineate seafloor sediment types within areas identified as "soft (s)" induration. Initially, ground truth data, in the form of grab sample descriptions and average grain size measurements, were categorized into four grain-size categories: mud (m), muddy sand (s/m), sand (s), and sandy gravel (s/g). Backscatter data was then classified into four intensity categories (low, med, high, very high) that are assumed to correspond to relative grain sizes. The aim was to develop an intensity classification of the seafloor that correlated with the data collected from the sediment samples. Thus, the combination of remotely observed data (acoustic backscatter) and directly observed data (sediment grab samples) translates to higher confidence in our ability to interpret broad areas of the seafloor. Nonetheless, we caution against using our sediment type interpretations as anything more than "best-guess" because of the following issues: characterization of contiguous sediment bodies is a difficult procedure because even small areas can exhibit a wide spectrum of backscatter-intensity values that lack distinct boundaries; backscatter intensity can be affected by depth, vegetation, water column conditions, and seafloor relief; and directly observed sediment data, in the form of sediment samples, represents a very small area relative to remotely observed data, requiring broad areas of interpolation. Please refer to Greene and others (2007) for more information regarding the Benthic Marine Potential Habitat Classification Scheme and the codes used to represent various seafloor features. References Cited: Greene, H.G., Bizzarro, J.J., O'Connell, V.M., and Brylinsky, C.K., 2007, Construction of digital potential marine benthic habitat maps using a coded classification scheme and its application, in Todd, B.J., and Greene, H.G., eds., Mapping the seafloor for habitat characterization: Geological Association of Canada Special Paper 47, p. 141-155. Greene, H.G., Yoklavich, M.M., Starr, R.M., O'Connell, V.M., Wakefield, W.W., Sullivan, D.E., McRea, J.E., Jr., and Cailliet, G.M., 1999, A classification scheme for deep seafloor habitats: Oceanologica Acta, v. 22, no. 6, p. 663-678. This layer is presented in the WGS84 coordinate system for web display purposes. Downloadable data are provided in native coordinate system or projection.

  16. Title: Faults: Offshore of Coal Oil Point, California, 2014

    Contributors:

    Summary: This line shapefile contains fault lines for the offshore area of Coal Oil Point, California. This map area is in the Ventura Basin, in the southern part of the Western Transverse Ranges geologic province, which is north of the California Continental Borderland (Fisher and others, 2009). Significant clockwise rotation--at least 90 degrees--since the early Miocene has been proposed for the Western Transverse Ranges province (Luyendyk and others, 1980; Hornafius and others, 1986; Nicholson and others, 1994), and this region is presently undergoing north-south shortening (see, for example, Larson and Webb, 1992). In the eastern part of the map area, cross sections suggest that this shortening is, in part, accommodated by offset on the North Channel, Red Mountain, South Ellwood, and More Creek Fault systems (Bartlett, 1998; Heck, 1998; Redin and others, 2005; Leifer and others, 2010). Crustal deformation in the western part of the Offshore of Coal Oil Point map area apparently is less complex than that in the eastern part (Redin, 2005); the western structure is dominated by a large, south-dipping homocline that extends from the south flank of the Santa Ynez Mountains beneath the continental shelf. A map which shows these data is published in Scientific Investigations Map 3302, "California State Waters Map Series--Offshore of Coal Oil Point, California." This layer is part of USGS Data Series 781. In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP) to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats and geology within the 3-nautical-mile limit of California's State Waters. CSMP has divided coastal California into 110 map blocks, each to be published individually as United States Geological Survey Open-File Reports (OFRs) or Scientific Investigations Maps (SIMs) at a scale of 1:24,000. Maps display seafloor morphology and character, identify potential marine benthic habitats and illustrate both the seafloor geology and shallow (to about 100 m) subsurface geology. Data layers for bathymetry, bathymetric contours, acoustic backscatter, seafloor character, potential benthic habitat and offshore geology were created for each map block, as well as regional-scale data layers for sediment thickness, depth to transition, transgressive contours, isopachs, predicted distributions of benthic macro-invertebrates and visual observations of benthic habitat from video cruises over the entire state. These data are intended for science researchers, students, policy makers, and the general public. This information is not intended for navigational purposes.The data can be used with geographic information systems (GIS) software to display geologic and oceanographic information. Additionally, this coverage can provide a geologic map for the public and geoscience community to aid in assessments and mitigation of geologic hazards in the coastal region and sufficient geologic information for land-use and land-management decisions both onshore and offshore. U.S. Geological Survey. (2013). Faults: Offshore of Coal Oil Point, California, 2014. California State Waters Map Series Data Catalog: U.S. Geological Survey Data Series 781. Available at: http://purl.stanford.edu/cy701ps4209. Map political location: Santa Barbara County, California Compilation scale: 1:24,000 Base maps used are hillshades generated from IfSAR, LiDAR, and multibeam mapping both onshore and offshore (see sheet 2, SIM 3302, for more information). References Cited: Bartlett, W.L., 1998, Ellwood oil field, Santa Barbara County, California, in Kunitomi, D.S., Hopps, T.E., and Galloway, J.M., eds., Structure and petroleum geology, Santa Barbara Channel, California: American Association of Petroleum Geologists, Pacific Section, and Coast Geological Society, Miscellaneous Publication 46, p. 217-237. Fisher, M.A., Sorlien, C.C., and Sliter, R.W., 2009, Potential earthquake faults offshore southern California from the eastern Santa Barbara channel to Dana Point, in Lee, H.J., and Normark, W.R., eds., Earth science in the urban ocean--The Southern California Continental Borderland: Geological Society of America Special Paper 454, p. 271-290. Heck, R.G., 1998, Santa Barbara Channel regional formline map, top Monterey Formation, in Kunitomi, D.S., Hopps, T.E., and Galloway, J.M., eds., Structure and petroleum geology, Santa Barbara Channel, California: American Association of Petroleum Geologists, Pacific Section, and Coast Geological Society, Miscellaneous Publication 46, 1 plate. Hornafius, J.S., Luyendyk, B.P., Terres, R.R., and Kamerling, M.J., 1986, Timing and extent of Neogene rotation in the western Transverse Ranges, California: Geological Society of America Bulletin, v. 97, p. 1,476-1,487. Larson, K.M., and Webb, F.H., 1992, Deformation in the Santa Barbara Channel from GPS measurements 1987-1991: Geophysical News Letters, v. 19, p. 1,491-1,494. Leifer, I., Kamerling, M., Luyendyk, B.P., and Wilson, D.S., 2010, Geologic control of natural marine hydrocarbon seep emissions, Coal Oil Point seep field, California: Geo-Marine Letters, v. 30, p. 331-338, doi:10.1007/s00367-010-0188-9. Luyendyk, B.P., Kamerling, M.J., and Terres, R.R., 1980, Geometric model for Neogene crustal rotations in southern California: Geological Society of America Bulletin, v. 91, p. 211-217. Nicholson, C., Sorlien, C., Atwater, T., Crowell, J.C., and Luyendyk, B.P., 1994, Microplate capture, rotation of the western Transverse Ranges, and initiation of the San Andreas transform as a low-angle fault system: Geology, v. 22, p. 491-495. Redin, T., 2005, Santa Barbara Channel structure and correlation sections--Correlation Section no. 36, N-S structure and correlation section, western Santa Ynez Mountains across the Santa Barbara Channel to Santa Rosa Island: American Association of Petroleum Geologists, Pacific Section, Publication CS 36, 1 sheet. Redin, T., Kamerling, M., and Forman, J., 2005, Santa Barbara Channel structure and correlation sections--Correlation Section no. 35, North Ellwood-Coal Oil Point area across the Santa Barbara Channel to the north coast of Santa Cruz Island: American Association of Petroleum Geologists, Pacific Section, Publication CS 35, 1 sheet. This layer is presented in the WGS84 coordinate system for web display purposes. Downloadable data are provided in native coordinate system or projection.

  17. Title: Folds: Offshore of San Francisco, California, 2010

    Contributors:

    Summary: This line shapefile contains depicts geologic folds within the offshore area surrounding San Francisco, California. The map area straddles the right-lateral transform boundary between the North American and Pacific plates and is cut by several active faults that cumulatively form a distributed shear zone, including the San Andreas Fault, the eastern strand of the San Gregorio Fault, the Golden Gate Fault, and the Potato Patch Fault (Bruns and others, 2002; Ryan and others, 2008). These faults are covered by Holocene sediments (mostly units Qms, Qmsb, Qmst) with no seafloor expression, and are mapped using seismic-reflection data. The San Andreas Fault is the primary plate-boundary structure and extends northwest across the map area; it intersects the shoreline 10 km north of the map area at Bolinas Lagoon, and 3 km south of the map area at Mussel Rock. This section of the San Andreas Fault has an estimated slip rate of 17 to 24 mm/yr (U.S. Geological Survey, 2010), and the devastating Great 1906 California earthquake (M 7.8) is thought to have nucleated on the San Andreas a few kilometers offshore of San Francisco within the map area (Bolt, 1968; Lomax, 2005). The San Andreas Fault forms the boundary between two distinct basement terranes, Upper Jurassic to Lower Cretaceous rocks of the Franciscan Complex to the east, and Late Cretaceous granitic and older metamorphic rocks of the Salinian block to the west. Franciscan Complex rocks (unit KJf, undivided) form seafloor outcrops at and north of Point Lobos adjacent to onland exposures. The Franciscan is divided into 13 different units for the onshore portion of this geologic map based on different lithologies and ages, but the unit cannot be similarly divided in the offshore because of a lack of direct observation and (or) sampling. Folds were primarily mapped by interpretation of seismic reflection profile data (see field activities S-15-10-NC and F-2-07-NC). The seismic reflection profiles were collected between 2007 and 2010. A map that shows these data is published in Open-File Report 2015-1068, "California State Waters Map Series--Offshore of San Francisco, California." This layer is part of USGS Data Series 781. In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP) to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats and geology within the 3-nautical-mile limit of California's State Waters. CSMP has divided coastal California into 110 map blocks, each to be published individually as United States Geological Survey Open-File Reports (OFRs) or Scientific Investigations Maps (SIMs) at a scale of 1:24,000. Maps display seafloor morphology and character, identify potential marine benthic habitats and illustrate both the seafloor geology and shallow (to about 100 m) subsurface geology. Data layers for bathymetry, bathymetric contours, acoustic backscatter, seafloor character, potential benthic habitat and offshore geology were created for each map block, as well as regional-scale data layers for sediment thickness, depth to transition, transgressive contours, isopachs, predicted distributions of benthic macro-invertebrates and visual observations of benthic habitat from video cruises over the entire state. This coverage can be used to to aid in assessments and mitigation of geologic hazards in the coastal region and to provide sufficient geologic information for land-use and land-management decisions both onshore and offshore. These data are intended for science researchers, students, policy makers, and the general public. This information is not intended for navigational purposes.The data can be used with geographic information systems (GIS) software to display geologic and oceanographic information. Greene, H.G., Johnson, S.Y., Manson, M.W., Hartwell, S.R., Endris, C.A., and Bruns, T.R. (2014). Folds: Offshore of San Francisco, California, 2010. California State Waters Map Series Data Catalog: U.S. Geological Survey Data Series 781. Available at: http://purl.stanford.edu/zb566ww6047. Map political location: San Mateo County, California Compilation scale: 1:24,000 Base maps used are hillshades generated from IfSAR, LiDAR, and multibeam mapping both onshore and offshore (see Bathymetry Hillshade--Offshore San Francisco, California, DS 781, for more information). References Cited Bolt, B.A., 1968, The focus of the 1906 California earthquake: Bulletin of the Seismological Society of America, v. 58, p. 457-471. Bruns, T.R., Cooper, A.K., Carlson, P.R., and McCulloch, D.S., 2002, Structure of the submerged San Andreas and San Gregorio fault zones in the Gulf of Farallones as inferred from high-resolution seismic-reflection data, in Parsons, T. (ed.), Crustal structure of the coastal and marine San Francisco Bay region, California: U.S. Geological Survey Professional Paper 1658, p. 77-117. Lomax, A., 2005, A reanalysis of the hypocentral location and related observations for the Great 1906 California earthquake: Bulletin of the Seismological Society of America, v. 95, p. 861-877. Ryan, H.F., Parsons, T., and Sliter, R.W., 2008. Vertical tectonic deformation associated with the San Andreas fault zone offshore of San Francisco, California. Tectonophysics, 429 (1-2), p. 209-224. U.S. Geological Survey and California Geological Survey, 2010, Quaternary fault and fold database for the United States, accessed April 5, 2012, from USGS website: http://earthquake.usgs.gov/hazards/qfaults/. This layer is presented in the WGS84 coordinate system for web display purposes. Downloadable data are provided in native coordinate system or projection.

  18. Title: Folds: Offshore of Bolinas, California, 2009

    Contributors:

    Summary: This line shapefile represents geologic folds within the offshore area of Bolinas, California. The map area straddles the right-lateral transform boundary between the North American and Pacific plates and is cut by several active faults that cumulatively form a distributed shear zone, including the San Andreas Fault, the eastern strand of the San Gregorio Fault, the Golden Gate Fault, and the Potato Patch Fault (Bruns and others, 2002; Ryan and others, 2008). These faults are covered by sediment (mostly unit Qms) with no seafloor expression, and are mapped using seismic-reflection data (see field activities S-8-09-NC and L-1-06-SF). The San Andreas Fault is the primary plate-boundary structure and extends northwest through the southern part of the map area before passing onshore at Bolinas Lagoon. This section of the San Andreas Fault has an estimated slip rate of 17 to 24 mm/yr (U.S. Geological Survey, 2010), and the devastating Great 1906 California earthquake (M 7.8) is thought to have nucleated on the San Andreas a few kilometers south of this map area offshore of San Francisco (e.g., Bolt, 1968; Lomax, 2005). The San Andreas Fault forms the boundary between two distinct basement terranes, Upper Jurassic and Lower Cretaceous melange and graywacke sandstone of the Franciscan Complex to the east, and Late Cretaceous granitic and older metamorphic rocks of the Salinian block to the west. Franciscan Complex rocks (unit KJf, undivided) form seafloor outcrops adjacent to the shoreline southeast of Stinson Beach that are commonly continuous with onshore coastal outcrops. Folds were primarily mapped by interpretation of seismic reflection profile data (see field activities S-8-09-NC and L-1-06-SF). The seismic reflection profiles were collected between 2006 and 2009. In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP) to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats and geology within the 3-nautical-mile limit of California's State Waters. CSMP has divided coastal California into 110 map blocks, each to be published individually as United States Geological Survey Open-File Reports (OFRs) or Scientific Investigations Maps (SIMs) at a scale of 1:24,000. Maps display seafloor morphology and character, identify potential marine benthic habitats and illustrate both the seafloor geology and shallow (to about 100 m) subsurface geology. Data layers for bathymetry, bathymetric contours, acoustic backscatter, seafloor character, potential benthic habitat and offshore geology were created for each map block, as well as regional-scale data layers for sediment thickness, depth to transition, transgressive contours, isopachs, predicted distributions of benthic macro-invertebrates and visual observations of benthic habitat from video cruises over the entire state. These data are intended for science researchers, students, policy makers, and the general public. This information is not intended for navigational purposes.The data can be used with geographic information systems (GIS) software to display geologic and oceanographic information. Additionally, this coverage can provide a geologic map for the public and geoscience community to aid in assessments and mitigation of geologic hazards in the coastal region and sufficient geologic information for land-use and land-management decisions both onshore and offshore. This information is not intended for navigational purposes. Johnson, S.Y., Greene, H.G., Manson, M.W., Hartwell, S.R., Endris, C.A., and Watt, J.T. (2014). Folds: Offshore of Bolinas, California, 2009. California State Waters Map Series Data Catalog: U.S. Geological Survey Data Series 781. Available at: http://purl.stanford.edu/xd152xm7498. Map political location: Marin County, California Compilation scale: 1:24,000 Base maps used are hillshades generated from IfSAR, LiDAR, and multibeam mapping both onshore and offshore (see Bathymetry Hillshade--Offshore Bolinas, California, DS 781, for more information). . References Cited Bolt, B.A., 1968, The focus of the 1906 California earthquake: Bulletin of the Seismological Society of America, v. 58, p. 457-471. Bruns, T.R., Cooper, A.K., Carlson, P.R., and McCulloch, D.S., 2002, Structure of the submerged San Andreas and San Gregorio fault zones in the Gulf of Farallones as inferred from high-resolution seismic-reflection data, in Parsons, T. (ed.), Crustal structure of the coastal and marine San Francisco Bay region, California: U.S. Geological Survey Professional Paper 1658, p. 77-117. Lomax, A., 2005, A reanalysis of the hypocentral location and related observations for the Great 1906 California earthquake: Bulletin of the Seismological Society of America, v. 95, p. 861-877. Ryan, H.F., Parsons, T., and Sliter, R.W., 2008. Vertical tectonic deformation associated with the San Andreas fault zone offshore of San Francisco, California. Tectonphysics, 429 (1-2), p. 209-224. U.S. Geological Survey and California Geological Survey, 2010, Quaternary fault and fold database for the United States, accessed April 5, 2012, from USGS website: http://earthquake.usgs.gov/hazards/qfaults/. This layer is presented in the WGS84 coordinate system for web display purposes. Downloadable data are provided in native coordinate system or projection.

  19. Title: Faults: Offshore of Point Reyes, California, 2009

    Contributors:

    Summary: This line shapefile represents fault lines in the offshore region of Point Reyes, California, Faults in the Point Reyes map area are identified on seismic-reflection data based on abrupt truncation or warping of reflections and (or) juxtaposition of reflection panels with different seismic parameters such as reflection presence, amplitude, frequency, geometry, continuity, and vertical sequence. The Point Reyes Fault Zone runs through the map area and is an offshore curvilinear reverse fault zone with predominantly north-side-up motion (Hoskins and Griffiths, 1971; McCulloch, 1987; Heck and others, 1990; Stozek, 2012) that likely connects with the western San Gregorio fault further to the south (Ryan and others, 2008), making it part of the San Andreas Fault System. The Point Reyes Fault Zone is characterized by a 5 to 11 km-wide zone of deformation in the shallow subsurface that is associated with two main fault structures, the Point Reyes Fault and the western Point Reyes Fault. Near the Point Reyes headland, vertical displacement of granitic basement across the Point Reyes Fault is at least 1.4 km (McCulloch, 1987). Offshore Double Point, vertical displacement on the Point Reyes Fault is difficult to assess because subsurface age constraints from nearby wells are lacking, and there are few offset horizons across the fault imaged on available seismic data. However, warping and folding of Neogene strata are clearly visible on high-resolution seismic data . The western Point Reyes Fault is defined by a broad anticlinal structure visible in both industry and high-resolution seismic datasets that exhibits that same sense of vergence (north-side-up) as the Point Reyes Fault. Faults were primarily mapped by interpretation of seismic reflection profile data (see field activity S-8-09-NC). The seismic reflection profiles were collected in 2009. The map that show these data are published in Open-File Report 2015-1114, "California State Waters Map Series—Offshore of Point Reyes, California." This layer is part of USGS Data Series 781. In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP) to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats and geology within the 3-nautical-mile limit of California's State Waters. CSMP has divided coastal California into 110 map blocks, each to be published individually as United States Geological Survey Open-File Reports (OFRs) or Scientific Investigations Maps (SIMs) at a scale of 1:24,000. Maps display seafloor morphology and character, identify potential marine benthic habitats and illustrate both the seafloor geology and shallow (to about 100 m) subsurface geology. Data layers for bathymetry, bathymetric contours, acoustic backscatter, seafloor character, potential benthic habitat and offshore geology were created for each map block, as well as regional-scale data layers for sediment thickness, depth to transition, transgressive contours, isopachs, predicted distributions of benthic macro-invertebrates and visual observations of benthic habitat from video cruises over the entire state. This coverage can be used to to aid in assessments and mitigation of geologic hazards in the coastal region and to provide sufficient geologic information for land-use and land-management decisions both onshore and offshore. These data are intended for science researchers, students, policy makers, and the general public. This information is not intended for navigational purposes.The data can be used with geographic information systems (GIS) software to display geologic and oceanographic information. Watt, J.T., Manson, M.W., and Greene, H.G. (2014). Faults: Offshore of Point Reyes, California, 2009. California State Waters Map Series Data Catalog: U.S. Geological Survey Data Series 781. Available at: http://purl.stanford.edu/pz354gs3764. Map political location: Marin County, California Compilation scale: 1:24,000 Base maps used are hillshades generated from IfSAR, LiDAR, and multibeam mapping both onshore and offshore (see see Bathymetry--Offshore Point Reyes, California, DS 781 for more information). References Cited Heck, R.G., Edwards, E.B., Kronen, J.D., Jr., and Willingham, C.R., 1990, Petroleum potential of the offshore outer Santa Cruz and Bodega basins, California, in Garrison, R.E., Greene, H.G., Hicks, K.R., Weber, G.E., and Wright, T.L., eds. Geology and tectonics of the central California coastal region, San Francisco to Monterey: Pacific Section, American Association of Petroleum Geologists Bulletin GB67, p. 143-164. Hoskins E.G., Griffiths, J.R., 1971, Hydrocarbon potential of northern and central California offshore: American Association of Petroleum Geologists Memoir 15, p. 212-228. McCulloch, D.S., 1987, Regional geology and hydrocarbon potential of offshore central California, in Scholl, D.W., Grantz, A., and Vedder, J.G., eds., Geology and Resource Potential of the Continental Margin of Western North America and Adjacent Oceans Beaufort Sea to Baja California: Houston, Texas, Circum-Pacific Council for Energy and Mineral Resources, Earth Science Series, v. 6., p. 353-401. Ryan, H.F., Parsons, T., and Sliter, R.W., 2008, Vertical tectonic deformation associated with the San Andreas Fault offshore of San Francisco, California: Tectonophysics, v. 475, p. 209-223. Stozek, B.A., 2012, Geophysical evidence for Quaternary deformation within the offshore San Andreas fault system, northern California: Masters Thesis, San Francisco State University, 141 p. This layer is presented in the WGS84 coordinate system for web display purposes. Downloadable data are provided in native coordinate system or projection.

  20. Title: Habitat: Offshore of San Francisco, California, 2013

    Contributors:

    Summary: This polygon shapefile depicts potential benthic habitats within the offshore area of San Francisco, California. Using multibeam echosounder (MBES) bathymetry and backscatter data, potential marine benthic habitat maps were constructed. The habitats were based on substrate types and documented or "ground truthed" using underwater video images and seafloor samples obtained by the USGS. These maps display various habitat types that range from flat, soft, unconsolidated sediment-covered seafloor to hard, deformed (folded), or highly rugose and differentially eroded bedrock exposures. Rugged, high-relief, rocky outcrops that have been eroded to form ledges and small caves are ideal habitat for rockfish (Sebastes spp.) and other bottom fish such as lingcod (Ophiodon elongatus). A map that shows these data is published in Open-File Report 2015-1068, "California State Waters Map Series--Offshore of San Francisco, California." This layer is part of USGS Data Series 781. In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP) to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats and geology within the 3-nautical-mile limit of California's State Waters. CSMP has divided coastal California into 110 map blocks, each to be published individually as United States Geological Survey Open-File Reports (OFRs) or Scientific Investigations Maps (SIMs) at a scale of 1:24,000. Maps display seafloor morphology and character, identify potential marine benthic habitats and illustrate both the seafloor geology and shallow (to about 100 m) subsurface geology. Data layers for bathymetry, bathymetric contours, acoustic backscatter, seafloor character, potential benthic habitat and offshore geology were created for each map block, as well as regional-scale data layers for sediment thickness, depth to transition, transgressive contours, isopachs, predicted distributions of benthic macro-invertebrates and visual observations of benthic habitat from video cruises over the entire state. The purpose of this work is to construct nine potential marine benthic habitat maps characterized after Greene et al. (1999, 2007). These habitat maps are constructed in the same manner as the maps completed for phase I of the California Seafloor Mapping Program (CSMP). These data are intended for science researchers, students, policy makers, and the general public. This information is not intended for navigational purposes.The data can be used with geographic information systems (GIS) software to display geologic and oceanographic information. Additionally, this coverage can provide a geologic map for the public and geoscience community to aid in assessments and mitigation of geologic hazards in the coastal region and sufficient geologic information for land-use and land-management decisions both onshore and offshore. This information is not intended for navigational purposes. Endris, C.A., Greene, H.G., and Dieter, B.E. (2014). Habitat: Offshore of San Francisco, California, 2013. California State Waters Map Series Data Catalog: U.S. Geological Survey Data Series 781. Available at: http://purl.stanford.edu/bp352gx0117. Data used for the creation of the potential marine benthic habitat interpretation consists of multibeam bathymetry, acoustic backscatter, sediment samples, camera-sled imagery, and existing geologic and seafloor interpretive maps. All data were compiled and displayed for interpretation using ESRI ArcGIS software, ArcMap v.10.0. The process consists of editing a shapefile within ArcMap, beginning with the construction of polygons to delineate benthic features. A benthic feature is an area with common characteristics which can be characterized as a single potential habitat type. The boundaries and extents of these features were determined from the bathymetric data. In general, interpretations were made at scales between 1:2,000 and 1:5,000. The USGS kindly provided the Center for Habitat Studies with a geodatabase consisting of feature datasets delineating geologic features and attributes for offshore San Francisco. Some of the delineated polygons were preserved as part of the potential marine benthic habitat characterization. However, the Greene and others (2007) code was used in attributing the dataset and additional polygons were added using the methods outlined below. High-resolution multibeam sonar data in the form of bathymetric depth grids (seafloor digital elevation models, referred to as the "bathymetry") were the primary data used in the interpretation of potential habitat types. Shaded-relief imagery ("hillshade") allows for visualization of the terrain and interpretation of submarine landforms. On the basis of these hillshades, areas of rock were identified by their often sharply defined edges and high relative relief; these may be contiguous outcrops, isolated parts of outcrop protruding through sediment cover (pinnacles), or isolated boulders. Although these types of features can be confidently characterized as exposed rock, it is not uncommon to find areas within or around the rocky feature that appear to be covered by a thin veneer of sediment. These areas are identified as "mixed" induration, containing both rock and sediment. Broad areas of the seafloor lacking sharp and angular characteristics are considered to be sediment. Sedimentary features may contain erosional or depositional characteristics recognizable in the bathymetry, such as dynamic bedforms (dunes or sand waves). General morphologic features such as scours, mounds, and depressions were also identified using the hillshade imagery. The combination of acoustic backscatter data and "ground truthed" sediment samples were used to delineate seafloor sediment types within areas identified as "soft (s)" induration. Initially, ground truth data, in the form of grab sample descriptions and average grain size measurements, were categorized into four grain-size categories: mud (m), muddy sand (s/m), sand (s), and sandy gravel (s/g). Backscatter data was then classified into four intensity categories (low, med, high, very high) that are assumed to correspond to relative grain sizes. The aim was to develop an intensity classification of the seafloor that correlated with the data collected from the sediment samples. Thus, the combination of remotely observed data (acoustic backscatter) and directly observed data (sediment grab samples) translates to higher confidence in our ability to interpret broad areas of the seafloor. Nonetheless, we caution against using our sediment type interpretations as anything more than "best-guess" because of the following issues: characterization of contiguous sediment bodies is a difficult procedure because even small areas can exhibit a wide spectrum of backscatter-intensity values that lack distinct boundaries; backscatter intensity can be affected by depth, vegetation, water column conditions, and seafloor relief; and directly observed sediment data, in the form of sediment samples, represents a very small area relative to remotely observed data, requiring broad areas of interpolation. Please refer to Greene and others (2007) for more information regarding the Benthic Marine Potential Habitat Classification Scheme and the codes used to represent various seafloor features. References Cited: Greene, H.G., Bizzarro, J.J., O'Connell, V.M., and Brylinsky, C.K., 2007, Construction of digital potential marine benthic habitat maps using a coded classification scheme and its application, in Todd, B.J., and Greene, H.G., eds., Mapping the seafloor for habitat characterization: Geological Association of Canada Special Paper 47, p. 141-155. Greene, H.G., Yoklavich, M.M., Starr, R.M., O'Connell, V.M., Wakefield, W.W., Sullivan, D.E., McRea, J.E., Jr., and Cailliet, G.M., 1999, A classification scheme for deep seafloor habitats: Oceanologica Acta, v. 22, no. 6, p. 663-678. This layer is presented in the WGS84 coordinate system for web display purposes. Downloadable data are provided in native coordinate system or projection.

Need help?

Ask GIS