Search for geospatial/GIS data

Find GIS data held at MIT and other institutions

20 results returned

  1. Title: Sketch of vicinity of Fort Fisher

    • Not specified
    • 1865
    Contributors:

    Summary: E. Moliter, lith. 48 x 33 centimeters

  2. Title: Cincinnati, Ohio, ca. 1840 (Raster Image)

    • Raster data
    • 2011
    Contributors:

    Summary: This layer is a georeferenced raster image of the historic paper map entitled: Map of Cincinnati, Covington & Newport, drawn by B. Oertly. It was lithographed and published by Otto Onken, ca. 1840. Scale [ca. 1:10,500]. Covers also a portion of Northern Kentucky. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Ohio South State Plane NAD 1983 coordinate system (in Feet) (Fipszone 3402). All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as roads, railroads and stations, drainage, selected buildings, city ward boundaries, cemeteries, canals, and more. Includes also indexes and inset map of Millcreek Township.This layer is part of a selection of digitally scanned and georeferenced historic maps from the Harvard Map Collection. These maps typically portray both natural and manmade features. The selection represents a range of originators, ground condition dates, scales, and map purposes.

  3. Title: Africa with expedition routes, 1865 (Raster Image)

    • Raster data
    • 2009
    Contributors:

    Summary: This layer is a georeferenced raster image of the historic paper map entitled: Karte von Afrika nach den neuesten Forschungen : mit Angabe der wichtigsten Entdeckungswege, bearbeitet und gezeichnet von Henry Lange. It was published by Otto Purfurst in 1865. Scale 1:14,250,000. Covers also Madagascar and part of the Arabian peninsula. The image inside the map neatline is georeferenced to the surface of the earth and fit to a non-standard 'World Sinusoidal' projection with the central meridian at 25 degrees east. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as drainage, cities and other human settlements, roads, expedition routes, and more. Relief is shown by hachures. Includes legend of expedition routes. This layer is part of a selection of digitally scanned and georeferenced historic maps from the Harvard Map Collection and the Harvard University Library as part of the Open Collections Program at Harvard University project: Organizing Our World: Sponsored Exploration and Scientific Discovery in the Modern Age. Maps selected for the project correspond to various expeditions and represent a range of regions, originators, ground condition dates, scales, and purposes.

  4. Title: Dresden, Germany, 1878 (Raster Image)

    • Raster data
    • 2008
    Contributors:

    Summary: This layer is a georeferenced raster image of the historic paper map entitled: Plan von Dresden :im Maa?sstab 1:15000 der nat. Gr?sse, bearbeitet u. gezeichnet v. A. Kiesling u. J.F. Winckler; Gestochen von A. K?hler. It was published by Verlag von H. Jaenicke in [1878]. Scale 1:15,000. Map in German.The image inside the map neatline is georeferenced to the surface of the earth and fit to the Deutsches Hauptdreiecksnetz (DHDN) 3-degree Gauss-Kruger Zone 5 coordinate system. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as roads, railroads and stations, drainage, built-up areas and selected buildings, city districts, ground cover, and more.This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.

  5. Title: Uebersichtskarte zu Buchner's Lahnführer

    • Image data
    • 1891
    Contributors:

    Summary: Map of the Lahn River Valley in the German state of Hesse. Relief shown by hachures. From: Führer für Giessen und das Lahnthal : von der Quelle bis zum Rhein ... / von Otto Buchner. Giessen : Roth, 1891.

  6. Title: International Bathymetric Chart of the Arctic Ocean, 500-Meter Resolution GeoTIFF (Version 3.0)

    • Raster data
    • 2012
    Contributors:

    Summary: This layer is a georeferenced image (GeoTIFF) of a digital bathymetric model (DBM) compiled with all multibeam, dense single beam and land data added at 500 x 500 meters resolution. The original (DBM) was compiled with all multibeam, dense single beam and land data added at 500 x 500 m resolution in a final step using the remove-restore method. Data were compiled from several multibeam cruises in the region dating from 1994 to 2011. The goal of this initiative is to develop a digital data base that contains all available bathymetric data north of 64° North, for use by mapmakers, researchers, institutions, and others whose work requires a detailed and accurate knowledge of the depth and the shape of the Arctic seabed. Jakobsson, M., L. A. Mayer, B. Coakley, J. A. Dowdeswell, S. Forbes, B. Fridman, H. Hodnesdal, R. Noormets, R. Pedersen, M. Rebesco, H.-W. Schenke, Y. Zarayskaya A, D. Accettella, A. Armstrong, R. M. Anderson, P. Bienhoff, A. Camerlenghi, I. Church, M. Edwards, J. V. Gardner, J. K. Hall, B. Hell, O. B. Hestvik, Y. Kristoffersen, C. Marcussen, R. Mohammad, D. Mosher, S. V. Nghiem, M. T. Pedrosa, P. G. Travaglini, and P. Weatherall, The International Bathymetric Chart of the Arctic Ocean (IBCAO) Version 3.0, Geophysical Research Letters, doi:10.1029/2012GL052219. [Auxiliary Material] This layer is presented in the WGS84 coordinate system for web display purposes. Downloadable data are provided in native coordinate system or projection.

  7. Title: International Bathymetric Chart of the Arctic Ocean, 30 Arc-Second Resolution GeoTIFF (Version 3.0)

    • Raster data
    • 2012
    Contributors:

    Summary: This layer is a georeferenced raster image (GeoTIFF) of a digital bathymetric model (DBM) of the Arctic Ocean compiled with all multibeam, dense single beam, and land data added at a resolution of 30 x 30 arc seconds. This is a reprojected version (WGS84) of the 500 meter resolution data layer. The original (DBM) was compiled with all multibeam, dense single beam and land data added at 500 x 500 m resolution in a final step using the remove-restore method. Data were compiled from several multibeam cruises in the region dating from 1994 to 2011. The goal of this initiative is to develop a digital data base that contains all available bathymetric data north of 64° North, for use by mapmakers, researchers, institutions, and others whose work requires a detailed and accurate knowledge of the depth and the shape of the Arctic seabed. Jakobsson, M., L. A. Mayer, B. Coakley, J. A. Dowdeswell, S. Forbes, B. Fridman, H. Hodnesdal, R. Noormets, R. Pedersen, M. Rebesco, H.-W. Schenke, Y. Zarayskaya A, D. Accettella, A. Armstrong, R. M. Anderson, P. Bienhoff, A. Camerlenghi, I. Church, M. Edwards, J. V. Gardner, J. K. Hall, B. Hell, O. B. Hestvik, Y. Kristoffersen, C. Marcussen, R. Mohammad, D. Mosher, S. V. Nghiem, M. T. Pedrosa, P. G. Travaglini, and P. Weatherall, The International Bathymetric Chart of the Arctic Ocean (IBCAO) Version 3.0, Geophysical Research Letters, doi: 10.1029/2012GL052219. [Auxiliary Material]

  8. Title: Zoning Map, Saugus, Massachusetts, 1978 (Raster Image)

    • Raster data
    • 2014
    Contributors:

    Summary: This layer is a georeferenced raster image of the historic paper map entitled: Zoning map, town of Saugus, Massachusetts, Essex County, original map prepared by Otto & Dwyer Inc. It was published by Saugus Engineering Department in 1978. Scale [ca. 1:12,000]. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Massachusetts State Plane Coordinate System, Mainland Zone (in Feet) (Fipszone 2001). All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as roads, railroads, drainage, cities and other human settlements, territorial boundaries, shoreline features, and more. Includes also zoning districts. This layer is part of a selection of digitally scanned and georeferenced historic maps from the Harvard Map Collection. These maps typically portray both natural and manmade features. The selection represents a range of originators, ground condition dates, scales, and map purposes.

  9. Title: Faults: Offshore of Refugio Beach, California, 2012

    • Line data
    • 2015
    Contributors:

    Summary: This line shapefile contains fault lines within the offshore area of Refugio Beach, California. This map area lies within the Western Transverse Ranges province, north of the southern California Borderland (Fisher and others, 2009). This province has undergone significant north-south compression since the Miocene, and recent global positioning system (GPS) data suggest north-south shortening of about 6 mm/yr (Larson and Webb, 1992). The active west-trending Pitas Point Fault (broad zone including back faults), Red Mountain Fault, and Rincon Creek Fault are some of the structures on which this shortening occurs (e.g., Jackson and Yeats, 1982; Sorlien and others, 2000; Fisher and others, 2009). This fault system, in aggregate, extends for about 100 km through the Ventura and Santa Barbara basins and represents an important earthquake hazard (e.g., Fisher and others, 2009). A map that show these data are published in Scientific Investigations Map 3319, "California State Waters Map Series--Offshore of Refugio Beach, California." This layer is part of USGS Data Series 781. In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP) to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats and geology within the 3-nautical-mile limit of California's State Waters. CSMP has divided coastal California into 110 map blocks, each to be published individually as United States Geological Survey Open-File Reports (OFRs) or Scientific Investigations Maps (SIMs) at a scale of 1:24,000. Maps display seafloor morphology and character, identify potential marine benthic habitats and illustrate both the seafloor geology and shallow (to about 100 m) subsurface geology. Data layers for bathymetry, bathymetric contours, acoustic backscatter, seafloor character, potential benthic habitat and offshore geology were created for each map block, as well as regional-scale data layers for sediment thickness, depth to transition, transgressive contours, isopachs, predicted distributions of benthic macro-invertebrates and visual observations of benthic habitat from video cruises over the entire state. This coverage can be used to to aid in assessments and mitigation of geologic hazards in the coastal region and to provide sufficient geologic information for land-use and land-management decisions both onshore and offshore. These data are intended for science researchers, students, policy makers, and the general public. This information is not intended for navigational purposes.The data can be used with geographic information systems (GIS) software to display geologic and oceanographic information. Conrad, J.E., Ritchie, A.C., Johnson, S.Y. (2015). Faults: Offshore of Refugio Beach, California, 2012. California State Waters Map Series Data Catalog: U.S. Geological Survey Data Series 781. Available at: http://purl.stanford.edu/yg931nr6687. Map political location: Santa Barbara County, California Compilation scale: 1:24,000 Base maps used are hillshades generated from IfSAR, LiDAR, and multibeam mapping both onshore and offshore (see sheet 2, SIM 3319, for more information). References Cited: Fisher, M.A., Sorlien, C.C., and Sliter, R.W., 2009, Potential earthquake faults offshore southern California from the eastern Santa Barbara channel to Dana Point, in Lee, H.J., and Normark, W.R., eds., 2009, Earth science in the urban ocean: The Southern California Continental Borderland: Geological Society of America Special Paper 454, p. 271-290. Jackson, P.A., and Yeats, R.S., 1982, Sructural evolution of Carpinteria basin, western Tranverse Ranges, California: American Association of Petroleum Geologists Bulletin, v. 66, p. 805-829. Larson, K.M., and Webb, F.H., 1992, Deformation in the Santa Barbara Channel from GPS measurements 1987-1991: Geophysical News Letters, v. 19, p. 1491-1494. Sorlien, C.C., Gratier, J.P., Luyendyk, B.P., Hornafius, J.S., and Hopps, T.E., 2000, Map restoration of folded and faulted late Cenozoic strata across the Oak Ridge fault, onshore and offshore Ventura basin, California: Geological Society of America Bulletin, v. 112, p. 1080-1090. This layer is presented in the WGS84 coordinate system for web display purposes. Downloadable data are provided in native coordinate system or projection.

  10. Title: Geology: Offshore of Refugio Beach, California, 2012

    • Polygon data
    • 2015
    Contributors:

    Summary: This polygon shapefile contains geological features for the offshore area of Refugio Beach, California. The offshore Refugio Beach map area largely consists of a gently offshore-dipping (<1 degree) shelf (10 to ~ 90 m) underlain by sediments derived primarily from relatively small coastal watersheds draining the Santa Ynez Mountains. Nearshore and shelf deposits are primarily sand (Qms) at depths less than about 45 m and more fine-grained sediment - very fine sand, silt and clay (Qmsf), at depths greater than about 45 m. The boundary between Qms and Qmsf is based on observations and extrapolation from sediment sampling (for example, Reid and others, 2006) and camera groundtruthing. The Qms-Qmsf boundary is transitional and approximate, expected to shift based on seasonal to annual to decadal scale cycles in wave climate, sediment supply, and sediment transport. Fine-grained deposits similar to Qmsf also occur below the shelfbreak on the upper slope at water depths greater than 90 m, where they are broken out as a separate unit (Qmsl) based on their location and geomorphology. More coarse-grained deposits recognized on the basis of high backscatter and in some cases moderate seafloor relief have two modes of occurrence. In the relative nearshore (10 to 30 m water depth), coarse-grained strata (Qmsc) underlie laterally coalescing and discontinuous bars at the mouths of steep coastal watersheds. Coarser-grained sediments also form several distinct lobes (Qmscl) in water depths of 25 to 70 m, about 600 to 3,000 m offshore. The lobes range in size from ~100,000 m2 to ~1.5 km2 and are mapped on the basis of high backscatter and subtle positive seafloor relief. These coarse-grained strata were clearly derived from fluvial point sources in the adjacent, steep Santa Ynez Mountains. Bedrock exposures in the nearshore west of El Capitan are assigned to the Miocene Monterey Formation based on proximity to coastal outcrops mapped by Dibblee (1981a, b). Much of the outer shelf (water depths greater than 70 m) is also underlain by undifferentiated Tertiary bedrock (Tbu). Based on the regional cross sections constrained by deep seismic-reflection data and borehole logs (Heck, 1998; Tennyson and Kropp, 1998; Forman and Redin, 2005; Redin, 2005) and high-resolution seismic-reflection data coupled with proprietary oil industry dartcore data (Ashley, 1977), these outer-shelf outcrops consist of the Miocene Sisquoc Formation and the Pliocene Repetto and Pico Formations. These rocks have been uplifted in a large, warped, regional south-dipping homocline that formed above the blind, north-dipping North Channel fault. The fault tip is inferred at about 1.5 sec TWT (~2 km) about 6 to 7 km offshore, beneath the slope and just outside California's State Waters. Bedrock that underlies some parts of the shelf is overlain by a thin (< 1 m?) sediment veneer, recognized based on high backscatter, flat relief, continuity with moderate to high relief bedrock outcrops, and (in some cases) high-resolution, seismic-reflection data (Qms/Qtbu. Qms/Tbu, Qms/Tm). These sediment layers are likely ephemeral - they may or may not be present based on storms, seasonal/annual patterns of sediment movement, or longer-term climate cycles. This area has a long history of petroleum production (Barnum, 1998), and grouped to solitary pockmarks (Qmp) caused by gas seeps are common features in the offshore Refugio map area. Shell discovered the Molino gas field in 1962, 4 km offshore in the southwest part of the map area. Production, by onshore directional drilling of an anticlinal trap, has been underway since the 1960's (Galloway, 1998). A map that show these data are published in Scientific Investigations Map 3319, "California State Waters Map Series--Offshore of Refugio Beach, California." This layer is part of USGS Data Series 781. In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP) to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats and geology within the 3-nautical-mile limit of California's State Waters. CSMP has divided coastal California into 110 map blocks, each to be published individually as United States Geological Survey Open-File Reports (OFRs) or Scientific Investigations Maps (SIMs) at a scale of 1:24,000. Maps display seafloor morphology and character, identify potential marine benthic habitats and illustrate both the seafloor geology and shallow (to about 100 m) subsurface geology. Data layers for bathymetry, bathymetric contours, acoustic backscatter, seafloor character, potential benthic habitat and offshore geology were created for each map block, as well as regional-scale data layers for sediment thickness, depth to transition, transgressive contours, isopachs, predicted distributions of benthic macro-invertebrates and visual observations of benthic habitat from video cruises over the entire state. This coverage can be used to to aid in assessments and mitigation of geologic hazards in the coastal region and to provide sufficient geologic information for land-use and land-management decisions both onshore and offshore. These data are intended for science researchers, students, policy makers, and the general public. This information is not intended for navigational purposes.The data can be used with geographic information systems (GIS) software to display geologic and oceanographic information. Conrad, J.E., Ritchie, A.C., Johnson, S.Y. (2015). Geology: Offshore of Refugio Beach, California, 2012. California State Waters Map Series Data Catalog: U.S. Geological Survey Data Series 781. Available at: http://purl.stanford.edu/pp901rg4093. Map political location: Santa Barbara County, California Compilation scale: 1:24,000 Base maps used are hillshades generated from IfSAR, LiDAR, and multibeam mapping both onshore and offshore (see sheet 2, SIM 3319 for more information). ). References cited: Ashley, R.J., Berry, R.W., and Fischer, P.J., 1977, Offshore geology and sediment distribution of the El Capitan-Gaviota continental shelf, northern Santa Barbara Channel, California: Journal of Sedimentary Petrology, v. 47, no, 1, p. 199-208. Barnum, H.P., 1998, Redevelopment of the western portion of the Rincon offshore oil field, Ventura, California, in Kunitomi, D.S., Hopps, T.E., and Galloway, J.M., eds., Structure and petroleum geology, Santa Barbara Channel, California: American Association of Petroleum Geologists, p. 201â215. Dibblee, T.W., Jr., 1981a, Geologic map of the Tajiquas Quadrangle, California: U.S. Geological Survey Open-File Report 81-371, 1:24,000. Dibblee, T.W., Jr., 1981b, Geologic map of the Gaviota Quadrangle, California: U.S. Geological Survey Open-File Report 81-374, 1:24,000. Dibblee, T.W., Jr., 1981c, Geologic map of the Santa Ynez Quadrangle, California: U.S. Geological Survey Open-File Report 81-371, 1:24,000. Dibblee, T.W., Jr., 1981d, Geologic map of the Solvang Quadrangle, California: U.S. Geological Survey Open-File Report 81-372, 1:24,000. Forman, J., and Redin, T., 2005, Santa Barbara Channel structure and correlation sections, Correlation Section no 37, Arroyo Hondo, Gaviota Quadrangle, Santa Ynez Mts. To North West Santa Rosa Island: American Association of Petroleum Geologists, Pacific Section, Publication CS 37, 1 sheet. Galloway, J.M., 1998, Chronology of petroleum exploration and development in the Santa Barbara channel area, offshore southern California, in Kunitomi, D.S., Hopps, T.E., and Galloway, J.M., eds., Structure and petroleum geology, Santa Barbara Channel, California: American Association of Petroleum Geologists, Pacific Section and Coast Geological Society, Miscellaneous Publication 46, p. 1â12, 1 sheet. Heck, R.G., 1998, Santa Barbara Channel Regional Formline Map, Top Monterey Formation, in Kunitomi, D.S., Hopps, T.E., and Galloway, J.M., 1998, Structure and Petroleum Geology, Santa Barbara Channel, California: American Association of Petroleum Geologists, Pacific Section, Miscellaneous Publication 46, Plate 1. Minor, S.A., Kellogg, K.S., Stanley, R.G., Gurrola, L.D., Keller, E.A., and Brandt, T.R., 2009, Geologic map of the Santa Barbara coastal plain area, Santa Barbara County, California: U.S. Geological Survey Scientific Investigations Map 3001, scale 1:25,000. Redin, T., 2005, Santa Barbara Channel structure and correlation sections, Correlation Section no 36, N-S structure and correlation section, western Santa Ynez Mountains across the Santa Barbara channel to Santa Rosa Island: American Association of Petroleum Geologists, Pacific Section, Publication CS 35, 1 sheet. Reid, J.A., Reid, J.M., Jenkins, C.J., Zimmerman, M., Williams, S.J., and Field, M.E., 2006,usSEABED:Pacific Coast (California Oregon, Washington) offshore surficial-sediment data release: U.S. Geological Survey Data Series 182, http://pubs.usgs.gov/ds/2006/182/. Tennyson, M.E., and Kropp, A.P., 1998, Regional cross section across Santa Barbara channel from northwestern Santa Rosa Island to Canada de Molina, in Kunitomi, D.S., Hopps, T.E., and Galloway, J.M., eds., in Structure and petroleum geology, Santa Barbara Channel, California: American Association of Petroleum Geologists, Pacific Section and Coast Geological Society, Miscellaneous Publication 46, 1 plate. This layer is presented in the WGS84 coordinate system for web display purposes. Downloadable data are provided in native coordinate system or projection.

  11. Title: Folds: Offshore of Refugio Beach, California, 2012

    • Line data
    • 2015
    Contributors:

    Summary: This line shapefile contains geologic folds for the offshore area of Refugio Beach, California. This map area lies within the Western Transverse Ranges province, north of the southern California Borderland (Fisher and others, 2009). This province has undergone significant north-south compression since the Miocene, and recent global positioning system (GPS) data suggest north-south shortening of about 6 mm/yr (Larson and Webb, 1992). The active west-trending Pitas Point Fault (broad zone including back faults), Red Mountain Fault, and Rincon Creek Fault are some of the structures on which this shortening occurs (e.g., Jackson and Yeats, 1982; Sorlien and others, 2000; Fisher and others, 2009). This fault system, in aggregate, extends for about 100 km through the Ventura and Santa Barbara basins and represents an important earthquake hazard (e.g., Fisher and others, 2009). A map that show these data are published in Scientific Investigations Map 3319, "California State Waters Map Series--Offshore of Refugio Beach, California." This layer is part of USGS Data Series 781. In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP) to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats and geology within the 3-nautical-mile limit of California's State Waters. CSMP has divided coastal California into 110 map blocks, each to be published individually as United States Geological Survey Open-File Reports (OFRs) or Scientific Investigations Maps (SIMs) at a scale of 1:24,000. Maps display seafloor morphology and character, identify potential marine benthic habitats and illustrate both the seafloor geology and shallow (to about 100 m) subsurface geology. Data layers for bathymetry, bathymetric contours, acoustic backscatter, seafloor character, potential benthic habitat and offshore geology were created for each map block, as well as regional-scale data layers for sediment thickness, depth to transition, transgressive contours, isopachs, predicted distributions of benthic macro-invertebrates and visual observations of benthic habitat from video cruises over the entire state. This coverage can be used to to aid in assessments and mitigation of geologic hazards in the coastal region and to provide sufficient geologic information for land-use and land-management decisions both onshore and offshore. These data are intended for science researchers, students, policy makers, and the general public. This information is not intended for navigational purposes.The data can be used with geographic information systems (GIS) software to display geologic and oceanographic information. Conrad, J.E., Ritchie, A.C., Johnson, S.Y. (2015). Folds: Offshore of Refugio Beach, California, 2012. California State Waters Map Series Data Catalog: U.S. Geological Survey Data Series 781. Available at: http://purl.stanford.edu/tp111fr3266. Map political location: Santa Barbara County, California Compilation scale: 1:24,000 Base maps used are hillshades generated from IfSAR, LiDAR, and multibeam mapping both onshore and offshore (see sheet 2, SIM 3319 for more information). References Cited: Fisher, M.A., Sorlien, C.C., and Sliter, R.W., 2009, Potential earthquake faults offshore southern California from the eastern Santa Barbara channel to Dana Point, in Lee, H.J., and Normark, W.R., eds., 2009, Earth science in the urban ocean: The Southern California Continental Borderland: Geological Society of America Special Paper 454, p. 271-290. Jackson, P.A., and Yeats, R.S., 1982, Sructural evolution of Carpinteria basin, western Tranverse Ranges, California: American Association of Petroleum Geologists Bulletin, v. 66, p. 805-829. Larson, K.M., and Webb, F.H., 1992, Deformation in the Santa Barbara Channel from GPS measurements 1987-1991: Geophysical News Letters, v. 19, p. 1491-1494. Sorlien, C.C., Gratier, J.P., Luyendyk, B.P., Hornafius, J.S., and Hopps, T.E., 2000, Map restoration of folded and faulted late Cenozoic strata across the Oak Ridge fault, onshore and offshore Ventura basin, California: Geological Society of America Bulletin, v. 112, p. 1080-1090. This layer is presented in the WGS84 coordinate system for web display purposes. Downloadable data are provided in native coordinate system or projection.

  12. Title: Battle of Corinth, Mississippi and vicinity, 1862 (Raster Image)

    • Raster data
    • 2007
    Contributors:

    Summary: This layer is a georeferenced raster image of the historic paper map: Map of the country between Monterey, Tenn. & Corinth, Miss. : showing the lines of entrenchments made & the routes followed by the U.S. forces under the command of Maj. Genl. Halleck, U.S. Army, in their advance upon Corinth in May 1862, surveyed under the direction of Col. Geo. Thom, A.D.C. & Chief of Topl. Engrs., Dept. of the Mississippi ; by Lieuts. Fred. Schraag and C.L. Spangenberg, Asst. Topl. Engrs. ; drawn by Lieut. Otto H. Matz, Asst. Topl. Engr. It was printed by Lith. of J. Bien, 1862. Scale [1:31,680]. Covers Corinth, Mississippi region including portions of Alcorn County, Mississippi and McNairy County, Tennessee. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Universal Transverse Mercator projection (WGS 1984 UTM Zone 16N). All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, or other information associated with the principal map. This map shows features such as houses, names of residents, fences, roads, railroads, vegetation, fields, drainage, Union and Confederate entrenchments, and more. Relief shown by hachures. This layer is part of a selection of digitally scanned and georeferenced historic maps of the Civil War from the Harvard Map Collection. Many items from this selection are from a collection of maps deposited by the Military Order of the Loyal Legion of the United States Commandery of the State of Massachusetts (MOLLUS) in the Harvard Map Collection in 1938. These maps typically portray both natural and manmade features, in particular showing places of military importance. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.

  13. Title: Map of Michigan: with part of the adjoining states; by Philu E. Judd; engraved by J.O. Lewis.

    • Line data
    • 1824
    Contributors:

    Summary: Positive photostat. Greenwich and Washington prime meridians. Accompanied by: Notes on Philu E. Judd's map of Michigan / REB (2 p.). 1 map: photocopy; 41 x 48 cm.

  14. Title: Map of the mineral regions of the counties of Gogebic and Ontonagon, Michigan, 1887; published by Edw. P. Allis & H.B. Merrell; compiled by Mess. J.M. Longyear and J.M. Case, Marquette, Mich.

    • Thematic maps ; Mine maps
    • 1887
    Contributors:

    Summary: Shows lands of Allis & Merrell in green, and of Case & Longyear in red. Also shows mines and mineral explorations, iron ranges, existing and projected railroads, wagon roads, and supply roads. Relief shown by hachures. "Supplement to the Mining, real estate & manufacturing reporter, Milwaukee, Wis., June 4th, 1887" --Upper margin. "Copyright applied for by Edw. P. Allis, Milwaukee, Wis." 1 map: color; 50 x 62 cm

  15. Title: Precambrian geology and geochronology of Minnesota, Bulletin 41, Plate 2

    • Not specified
    • 1961
    Contributors:

    Summary: Interpretations of bedrock geology (distribution of rock at the land surface and beneath surface sediments) of east-central Minnesota, scale 1 inch = about 10 miles.

  16. Title: Precambrian geology and geochronology of Minnesota, Bulletin 41, Plate 5

    • Not specified
    • 1961
    Contributors:

    Summary: Interpretations of bedrock geology (distribution of rock at the land surface and beneath surface sediments) of the Granite Falls area, Minnesota, showing locations of dated samples, scale 1 inch = about 1/4 mile.

  17. Title: Precambrian geology and geochronology of Minnesota, Bulletin 41, Plate 1

    • Not specified
    • 1961
    Contributors:

    Summary: Interpretations of bedrock geology (distribution of rock at the land surface and beneath surface sediments) of northeastern Minnesota, scale 1 inch = about 15 miles.

  18. Title: Precambrian geology and geochronology of Minnesota, Bulletin 41, Plate 3

    • Not specified
    • 1961
    Contributors:

    Summary: Map of the Minnesota-Ontario border region, showing location of dated samples, scale 1 inch = about 20 miles.

  19. Title: Precambrian geology and geochronology of Minnesota, Bulletin 41, Plate 4

    • Not specified
    • 1961
    Contributors:

    Summary: Map of western part of the Lake Superior region, Minnesota, showing location of samples that were age-dated by radioactive isotope methods, scale 1 inch = about 40 miles.

  20. Title: Übersichts Charte von Europa und den angrenzenden Ländern in Nord Africa und West Asien in 9 Blatt

    • Image data
    • 1827
    Contributors:

    Summary: Map of Europe and Turkey with parts of North Africa and the Middle East. Relief shown by hachures. Wall map. Historic Maps copy has label on verso: Ch. Picquet, géographe du Roi ... , Paris; title in ms. on label: Europe, Rühl de Lilienstern.

Need help?

Ask GIS